ÃÎÑÒ Ð 50779.10-2000
(ÈÑÎ 3534.1-93)
ÃÎÑÓÄÀÐÑÒÂÅÍÍÛÉ ÑÒÀÍÄÀÐÒ ÐÎÑÑÈÉÑÊÎÉ ÔÅÄÅÐÀÖÈÈ
Ñòàòèñòè÷åñêèå ìåòîäû
ÂÅÐÎßÒÍÎÑÒÜ È ÎÑÍÎÂÛ ÑÒÀÒÈÑÒÈÊÈ
Òåðìèíû è îïðåäåëåíèÿ
ÃÎÑÑÒÀÍÄÀÐÒ ÐÎÑÑÈÈ
Ìîñêâà
ÏÐÅÄÈÑËÎÂÈÅ
1. ÐÀÇÐÀÁÎÒÀÍ È ÂÍÅÑÅÍ Òåõíè÷åñêèì êîìèòåòîì ïî ñòàíäàðòèçàöèè ÒÊ 125 «Ñòàòèñòè÷åñêèå ìåòîäû â óïðàâëåíèè êà÷åñòâîì ïðîäóêöèè»,
Àêöèîíåðíûì îáùåñòâîì «Íàó÷íî-èññëåäîâàòåëüñêèé öåíòð êîíòðîëÿ è äèàãíîñòèêè òåõíè÷åñêèõ ñèñòåì» (ÀÎ «ÍÈÖ ÊÄ»).
2. ÏÐÈÍßÒ È ÂÂÅÄÅÍ Â ÄÅÉÑÒÂÈÅ Ïîñòàíîâëåíèåì Ãîññòàíäàðòà Ðîññèè îò 29 äåêàáðÿ 2000 ã. ¹ 429-ñò.
3. Ðàçäåëû íàñòîÿùåãî ñòàíäàðòà, çà èñêëþ÷åíèåì ðàçäåëîâ 1a, 1b è ïðèëîæåíèÿ À, ïðåäñòàâëÿþò ñîáîé àóòåíòè÷íûé òåêñò ìåæäóíàðîäíîãî ñòàíäàðòà ÈÑÎ 3534.1-93 «Ñòàòèñòèêà. Ñëîâàðü è óñëîâíûå îáîçíà÷åíèÿ. ×àñòü 1. Âåðîÿòíîñòü è îñíîâíûå ñòàòèñòè÷åñêèå òåðìèíû».
4. ÂÂÅÄÅÍ ÂÏÅÐÂÛÅ.
ÑÎÄÅÐÆÀÍÈÅ
ÂÂÅÄÅÍÈÅ
Óñòàíîâëåííûå â ñòàíäàðòå òåðìèíû ðàñïîëîæåíû â ñèñòåìàòèçèðîâàííîì ïîðÿäêå è îòðàæàþò ñèñòåìó ïîíÿòèé â îáëàñòè òåîðèè âåðîÿòíîñòåé è ìàòåìàòè÷åñêîé ñòàòèñòèêè.
Äëÿ êàæäîãî ïîíÿòèÿ óñòàíîâëåí îäèí ñòàíäàðòèçîâàííûé òåðìèí.
Íåäîïóñòèìûå ê ïðèìåíåíèþ òåðìèíû-ñèíîíèìû ïðèâåäåíû â êðóãëûõ ñêîáêàõ ïîñëå ñòàíäàðòèçîâàííîãî òåðìèíà è îáîçíà÷åíû ïîìåòîé «Íäï.».
Òåðìèíû-ñèíîíèìû áåç ïîìåòû «Íäï.» ïðèâåäåíû â êà÷åñòâå ñïðàâî÷íûõ äàííûõ è íå ÿâëÿþòñÿ ñòàíäàðòèçîâàííûìè.
Çàêëþ÷åííàÿ â êðóãëûå ñêîáêè ÷àñòü òåðìèíà ìîæåò áûòü îïóùåíà ïðè èñïîëüçîâàíèè òåðìèíà â äîêóìåíòàõ ïî ñòàíäàðòèçàöèè.
Íàëè÷èå êâàäðàòíûõ ñêîáîê â òåðìèíîëîãè÷åñêîé ñòàòüå îçíà÷àåò, ÷òî â íåå âêëþ÷åíû äâà òåðìèíà, èìåþùèõ îáùèå òåðìèíîýëåìåíòû.
 àëôàâèòíûõ óêàçàòåëÿõ äàííûå òåðìèíû ïðèâåäåíû îòäåëüíî ñ óêàçàíèåì íîìåðà ñòàòüè.
Ïðèâåäåííûå îïðåäåëåíèÿ ìîæíî ïðè íåîáõîäèìîñòè èçìåíèòü, ââîäÿ â íèõ ïðîèçâîäíûå ïðèçíàêè, ðàñêðûâàÿ çíà÷åíèÿ èñïîëüçóåìûõ â íèõ òåðìèíîâ, óêàçûâàÿ îáúåêòû, âõîäÿùèå â îáúåì îïðåäåëÿåìîãî ïîíÿòèÿ. Èçìåíåíèÿ íå äîëæíû íàðóøàòü îáúåì è ñîäåðæàíèå ïîíÿòèé, îïðåäåëåííûõ â äàííîì ñòàíäàðòå.
Ñòàíäàðòèçîâàííûå òåðìèíû íàáðàíû ïîëóæèðíûì øðèôòîì, èõ êðàòêèå ôîðìû, ïðåäñòàâëåííûå àááðåâèàòóðîé, - ñâåòëûì, à ñèíîíèìû - êóðñèâîì.
 ñòàíäàðòå ïðèâåäåíû èíîÿçû÷íûå ýêâèâàëåíòû ñòàíäàðòèçîâàííûõ òåðìèíîâ íà àíãëèéñêîì (en) è ôðàíöóçñêîì (fr) ÿçûêàõ.
 íàñòîÿùåì ñòàíäàðòå ìíîãèå òåðìèíû îïðåäåëåíû îäíîâðåìåííî â ðàçäåëå 1 è â ðàçäåëå 2 â çàâèñèìîñòè îò òîãî, èìåþò ëè îíè ïðèìåíåíèå:
- òåîðåòè÷åñêîå - â âåðîÿòíîñòíîì ñìûñëå;
- ïðàêòè÷åñêîå - â ñòàòèñòè÷åñêîì ñìûñëå.
Òåðìèíû, îïðåäåëåííûå â ðàçäåëå 1, ñôîðìóëèðîâàíû íà ÿçûêå ñâîéñòâ ãåíåðàëüíûõ ñîâîêóïíîñòåé.  ðàçäåëå 2 îïðåäåëåíèÿ îòíåñåíû ê ìíîæåñòâó íàáëþäåíèé. Ìíîãèå èç íèõ îñíîâàíû íà âûáîðî÷íûõ íàáëþäåíèÿõ èç íåêîòîðîé ñîâîêóïíîñòè. Äëÿ òîãî ÷òîáû ðàçëè÷àòü ïàðàìåòðû ãåíåðàëüíîé ñîâîêóïíîñòè è ðåçóëüòàòû âû÷èñëåíèé îöåíîê ïàðàìåòðîâ ïî âûáîðî÷íûì äàííûì, ê îïðåäåëåíèÿì ðÿäà òåðìèíîâ èç ðàçäåëà 2 äîáàâëåíî ñëîâî «âûáîðî÷íûé» èëè «ýìïèðè÷åñêèé».
ÃÎÑÓÄÀÐÑÒÂÅÍÍÛÉ ÑÒÀÍÄÀÐÒ ÐÎÑÑÈÉÑÊÎÉ ÔÅÄÅÐÀÖÈÈ
Ñòàòèñòè÷åñêèå ìåòîäû
ÂÅÐÎßÒÍÎÑÒÜ È ÎÑÍÎÂÛ ÑÒÀÒÈÑÒÈÊÈ
Òåðìèíû è îïðåäåëåíèÿ
Statistical
methods. Probability and general statistical terms.
Terms and definitions
Äàòà ââåäåíèÿ 2001-07-01
Íàñòîÿùèé ñòàíäàðò óñòàíàâëèâàåò òåðìèíû è îïðåäåëåíèÿ ïîíÿòèé â îáëàñòè òåîðèè âåðîÿòíîñòåé è ìàòåìàòè÷åñêîé ñòàòèñòèêè.
Òåðìèíû, óñòàíîâëåííûå íàñòîÿùèì ñòàíäàðòîì, îáÿçàòåëüíû äëÿ ïðèìåíåíèÿ âî âñåõ âèäàõ äîêóìåíòàöèè è ëèòåðàòóðû ïî ñòàòèñòè÷åñêèì ìåòîäàì, âõîäÿùèõ â ñôåðó ðàáîò ïî ñòàíäàðòèçàöèè è (èëè) èñïîëüçóþùèõ ðåçóëüòàòû ýòèõ ðàáîò.
 íàñòîÿùåì ñòàíäàðòå èñïîëüçîâàíû ññûëêè íà ñëåäóþùèå ñòàíäàðòû:
ÃÎÑÒ Ð 50779,11-2000 (ÈÑÎ 3534.2-93) Ñòàòèñòè÷åñêèå ìåòîäû. Ñòàòèñòè÷åñêîå óïðàâëåíèå êà÷åñòâîì. Òåðìèíû è îïðåäåëåíèÿ.
ÈÑÎ 31.0-921) Âåëè÷èíû è åäèíèöû èçìåðåíèÿ. ×àñòü 0. Îáùèå ïðèíöèïû.
ÈÑÎ 31.1-921) Âåëè÷èíû è åäèíèöû èçìåðåíèÿ. ×àñòü 1. Ïðîñòðàíñòâî è âðåìÿ.
ÈÑÎ 31.2-921) Âåëè÷èíû è åäèíèöû èçìåðåíèÿ. ×àñòü 2. Ïåðèîäè÷åñêèå ÿâëåíèÿ.
ÈÑÎ 31.3-921) Âåëè÷èíû è åäèíèöû èçìåðåíèÿ. ×àñòü 3. Ìåõàíèêà.
ÈÑÎ 31.4-921) Âåëè÷èíû è åäèíèöû èçìåðåíèÿ. ×àñòü 4. Òåðìîîáðàáîòêà.
ÈÑÎ 31.5-921) Âåëè÷èíû è åäèíèöû èçìåðåíèÿ. ×àñòü 5. Ýëåêòðè÷åñòâî è ìàãíèòíîå èçëó÷åíèå.
ÈÑÎ 31.6-921) Âåëè÷èíû è åäèíèöû èçìåðåíèÿ. ×àñòü 6. Ñâåòîâîå è ýëåêòðîìàãíèòíîå èçëó÷åíèå.
ÈÑÎ 31.7-921) Âåëè÷èíû è åäèíèöû èçìåðåíèÿ. ×àñòü 7. Àêóñòèêà.
ÈÑÎ 31.8-921) Âåëè÷èíû è åäèíèöû èçìåðåíèÿ. ×àñòü 8. Ôèçè÷åñêàÿ õèìèÿ è ìîëåêóëÿðíàÿ ôèçèêà.
ÈÑÎ 31.9-921) Âåëè÷èíû è åäèíèöû èçìåðåíèÿ. ×àñòü 9. Àòîìíàÿ è ÿäåðíàÿ ôèçèêà.
ÈÑÎ 31.10-921) Âåëè÷èíû è åäèíèöû èçìåðåíèÿ. ×àñòü 10. ßäåðíûå ðåàêöèè è èîíîâîå èçëó÷åíèå.
ÈÑÎ 31.11-921) Âåëè÷èíû è åäèíèöû èçìåðåíèÿ. ×àñòü 11. Ìàòåìàòè÷åñêèå çíàêè è ñèìâîëû, èñïîëüçóåìûå â ôèçè÷åñêèõ íàóêàõ.
ÈÑÎ 31.12-921) Âåëè÷èíû è åäèíèöû èçìåðåíèÿ. ×àñòü 12. ×èñëî õàðàêòåðèñòèê.
ÈÑÎ 31.13-921) Âåëè÷èíû è åäèíèöû èçìåðåíèÿ. ×àñòü 13. Ôèçèêà òâåðäîãî òåëà.
ÈÑÎ 3534.3-851) Ñòàòèñòèêà. Ñëîâàðü è óñëîâíûå îáîçíà÷åíèÿ. ×àñòü 3. Ïëàíèðîâàíèå ýêñïåðèìåíòîâ.
ÈÑÎ 5725.1-911) Òî÷íîñòü ìåòîäîâ è ðåçóëüòàòîâ èçìåðåíèé. ×àñòü 1. Îáùèå ïðèíöèïû è îïðåäåëåíèÿ
1) Îðèãèíàëû ìåæäóíàðîäíûõ ñòàíäàðòîâ ÈÑÎ - âî ÂÍÈÈÊÈ Ãîññòàíäàðòà Ðîññèè.
Äåéñòâèòåëüíîå ÷èñëî â èíòåðâàëå îò 0 äî 1, îòíîñÿùååñÿ ê ñëó÷àéíîìó ñîáûòèþ. Ïðèìå÷àíèÿ 1. ×èñëî ìîæåò îòðàæàòü îòíîñèòåëüíóþ ÷àñòîòó â ñåðèè íàáëþäåíèé èëè ñòåïåíü óâåðåííîñòè â òîì, ÷òî íåêîòîðîå ñîáûòèå ïðîèçîéäåò. Äëÿ âûñîêîé ñòåïåíè óâåðåííîñòè âåðîÿòíîñòü áëèçêà ê åäèíèöå. 2. Âåðîÿòíîñòü ñîáûòèÿ À îáîçíà÷àþò Ðr (À) èëè Ð (À) |
en probability fr probabilite |
|
Ïåðåìåííàÿ, êîòîðàÿ ìîæåò ïðèíèìàòü ëþáîå çíà÷åíèå èç çàäàííîãî ìíîæåñòâà çíà÷åíèé è ñ êîòîðîé ñâÿçàíî ðàñïðåäåëåíèå âåðîÿòíîñòåé. Ïðèìå÷àíèå - Ñëó÷àéíóþ âåëè÷èíó, êîòîðàÿ ìîæåò ïðèíèìàòü òîëüêî îòäåëüíûå çíà÷åíèÿ, íàçûâàþò äèñêðåòíîé. Ñëó÷àéíóþ âåëè÷èíó, êîòîðàÿ ìîæåò ïðèíèìàòü ëþáûå çíà÷åíèÿ èç êîíå÷íîãî èëè áåñêîíå÷íîãî èíòåðâàëà, íàçûâàþò íåïðåðûâíîé. |
en random variable; variate fr variable aleatoire |
|
1.3. ðàñïðåäåëåíèå (âåðîÿòíîñòåé) Ôóíêöèÿ, îïðåäåëÿþùàÿ âåðîÿòíîñòü òîãî, ÷òî ñëó÷àéíàÿ âåëè÷èíà ïðèìåò êàêîå-ëèáî çàäàííîå çíà÷åíèå èëè áóäåò ïðèíàäëåæàòü çàäàííîìó ìíîæåñòâó çíà÷åíèé. Ïðèìå÷àíèå - Âåðîÿòíîñòü òîãî, ÷òî ñëó÷àéíàÿ âåëè÷èíà íàõîäèòñÿ â îáëàñòè åå èçìåíåíèÿ, ðàâíà åäèíèöå |
en probability distribution fr loi de probabilite |
|
Ôóíêöèÿ, çàäàþùàÿ äëÿ ëþáîãî çíà÷åíèÿ õ âåðîÿòíîñòü òîãî, ÷òî ñëó÷àéíàÿ âåëè÷èíà Õ ìåíüøå èëè ðàâíà õ,
|
en distribution function fr fonction de repartition |
|
1.5. ïëîòíîñòü ðàñïðåäåëåíèÿ (âåðîÿòíîñòåé) Ïåðâàÿ ïðîèçâîäíàÿ, åñëè îíà ñóùåñòâóåò, ôóíêöèè ðàñïðåäåëåíèÿ íåïðåðûâíîé ñëó÷àéíîé âåëè÷èíû
Ïðèìå÷àíèå - íàçûâàåòñÿ ýëåìåíòîì âåðîÿòíîñòè
|
en probability density function fr fonction de densite de probabilit |
|
1.6. ôóíêöèÿ ðàñïðåäåëåíèÿ (âåðîÿòíîñòåé) ìàññ Ôóíêöèÿ, äàþùàÿ äëÿ êàæäîãî çíà÷åíèÿ xi äèñêðåòíîé ñëó÷àéíîé âåëè÷èíû Õ âåðîÿòíîñòü pi òîãî, ÷òî ñëó÷àéíàÿ âåëè÷èíà ðàâíà õi:
|
en probability mass function fr fonction de masse |
|
1.7. äâóìåðíàÿ ôóíêöèÿ ðàñïðåäåëåíèÿ Ôóíêöèÿ, äàþùàÿ äëÿ ëþáîé ïàðû çíà÷åíèé õ, ó âåðîÿòíîñòü òîãî, ÷òî ñëó÷àéíàÿ âåëè÷èíà X áóäåò ìåíüøå èëè ðàâíà õ, à ñëó÷àéíàÿ âåëè÷èíà Y - ìåíüøå èëè ðàâíà y:
Ïðèìå÷àíèå - Âûðàæåíèå â êâàäðàòíûõ ñêîáêàõ îçíà÷àåò ïåðåñå÷åíèå ñîáûòèé Õ £ õ è Y £ ó |
en bivariate distribution function fr fonction de repartition a deux variables |
|
1.8. ìíîãîìåðíàÿ ôóíêöèÿ ðàñïðåäåëåíèÿ Ôóíêöèÿ, äàþùàÿ äëÿ ëþáîãî íàáîðà çíà÷åíèé õ, ó, ... âåðîÿòíîñòü òîãî, ÷òî íåñêîëüêî ñëó÷àéíûõ âåëè÷èí X, Y, ... áóäóò ìåíüøå èëè ðàâíû ñîîòâåòñòâóþùèì çíà÷åíèÿì õ, ó, ...:
|
en multivariate distribution function fr fonction de repartition a plusieurs variables |
|
1.9. ìàðãèíàëüíîå ðàñïðåäåëåíèå (âåðîÿòíîñòåé) Ðàñïðåäåëåíèå âåðîÿòíîñòåé ïîäìíîæåñòâà k1 èç ìíîæåñòâà k ñëó÷àéíûõ âåëè÷èí, ïðè ýòîì îñòàëüíûå (k - k1) ñëó÷àéíûå âåëè÷èíû ïðèíèìàþò ëþáûå çíà÷åíèÿ â ñîîòâåòñòâóþùèõ ìíîæåñòâàõ âîçìîæíûõ çíà÷åíèé. Ïðèìå÷àíèå - Äëÿ ðàñïðåäåëåíèÿ âåðîÿòíîñòåé òðåõ ñëó÷àéíûõ âåëè÷èí X, Y, Z ñóùåñòâóþò: - òðè äâóìåðíûõ ìàðãèíàëüíûõ ðàñïðåäåëåíèÿ, ò.å. ðàñïðåäåëåíèÿ ïàð (X, Y), (X, Z), (Y, Z); - òðè îäíîìåðíûõ ìàðãèíàëüíûõ ðàñïðåäåëåíèÿ, ò.å. ðàñïðåäåëåíèÿ X, Y è Z. |
en marginal probability distribution fr loi de probabilite marginale |
|
1.10. óñëîâíîå ðàñïðåäåëåíèå (âåðîÿòíîñòåé) Ðàñïðåäåëåíèå ïîäìíîæåñòâà k1 < k ñëó÷àéíûõ âåëè÷èí èç ðàñïðåäåëåíèÿ ñëó÷àéíûõ âåëè÷èí, êîãäà îñòàëüíûå (k - k1) ñëó÷àéíûå âåëè÷èíû ïðèíèìàþò ïîñòîÿííûå çíà÷åíèÿ. Ïðèìå÷àíèå - Äëÿ ðàñïðåäåëåíèÿ âåðîÿòíîñòåé äâóõ ñëó÷àéíûõ âåëè÷èí X, Y ñóùåñòâóþò: - óñëîâíûå ðàñïðåäåëåíèÿ X: íåêîòîðîå êîíêðåòíîå ðàñïðåäåëåíèå ïðåäñòàâëÿþò êàê «ðàñïðåäåëåíèå X ïðè Y = y»; - óñëîâíûå ðàñïðåäåëåíèÿ Y: íåêîòîðîå êîíêðåòíîå ðàñïðåäåëåíèå ïðåäñòàâëÿþò êàê «ðàñïðåäåëåíèå Y ïðè Õ = õ». |
en conditional probability distribution fr loi de probabilite conditionnelle |
|
1.11. íåçàâèñèìîñòü (ñëó÷àéíûõ âåëè÷èí) Äâå ñëó÷àéíûå âåëè÷èíû Õ è Y íåçàâèñèìû, åñëè èõ ôóíêöèè ðàñïðåäåëåíèÿ ïðåäñòàâëåíû êàê
ãäå F (õ, ¥) = G (õ) è F (¥, ó) = Í (ó) - ìàðãèíàëüíûå ôóíêöèè ðàñïðåäåëåíèÿ X è Y, ñîîòâåòñòâåííî, äëÿ âñåõ ïàð (õ, ó). Ïðèìå÷àíèÿ: 1. Äëÿ íåïðåðûâíîé íåçàâèñèìîé ñëó÷àéíîé âåëè÷èíû åå ïëîòíîñòü ðàñïðåäåëåíèÿ, åñëè îíà ñóùåñòâóåò, âûðàæàþò êàê
ãäå g (x) è h (ó) - ìàðãèíàëüíûå ïëîòíîñòè ðàñïðåäåëåíèÿ Õ è Y, ñîîòâåòñòâåííî, äëÿ âñåõ ïàð (õ, ó). Äëÿ äèñêðåòíîé íåçàâèñèìîé ñëó÷àéíîé âåëè÷èíû åå âåðîÿòíîñòè âûðàæàþò êàê
äëÿ âñåõ ïàð (xi, ój). 2. Äâà ñîáûòèÿ íåçàâèñèìû, åñëè âåðîÿòíîñòü òîãî, ÷òî îíè îáà ïðîèçîéäóò, ðàâíà ïðîèçâåäåíèþ âåðîÿòíîñòåé ýòèõ äâóõ ñîáûòèé. |
en independence fr independance |
|
Âåëè÷èíà, èñïîëüçóåìàÿ â îïèñàíèè ðàñïðåäåëåíèÿ âåðîÿòíîñòåé íåêîòîðîé ñëó÷àéíîé âåëè÷èíû. |
en parameter fr parametre |
|
Âçàèìîçàâèñèìîñòü äâóõ èëè íåñêîëüêèõ ñëó÷àéíûõ âåëè÷èí â ðàñïðåäåëåíèè äâóõ èëè íåñêîëüêèõ ñëó÷àéíûõ âåëè÷èí. Ïðèìå÷àíèå - Áîëüøèíñòâî ñòàòèñòè÷åñêèõ ìåð êîððåëÿöèè èçìåðÿþò òîëüêî ñòåïåíü ëèíåéíîé çàâèñèìîñòè. |
en correlation fr correlation |
|
1.14. êâàíòèëü (ñëó÷àéíîé âåëè÷èíû) Çíà÷åíèå ñëó÷àéíîé âåëè÷èíû õp, äëÿ êîòîðîãî ôóíêöèÿ ðàñïðåäåëåíèÿ ïðèíèìàåò çíà÷åíèå p (0 £ p £ 1) èëè åå çíà÷åíèå èçìåíÿåòñÿ ñêà÷êîì îò ìåíüøåãî p äî ïðåâûøàþùåãî ð. Ïðèìå÷àíèÿ 1. Åñëè çíà÷åíèå ôóíêöèè ðàñïðåäåëåíèÿ ðàâíî p âî âñåì èíòåðâàëå ìåæäó äâóìÿ ïîñëåäîâàòåëüíûìè çíà÷åíèÿìè ñëó÷àéíîé âåëè÷èíû, òî ëþáîå çíà÷åíèå â ýòîì èíòåðâàëå ìîæíî ðàññìàòðèâàòü êàê p-êâàíòèëü. 2. Âåëè÷èíà õp áóäåò p-êâàíòèëåì, åñëè
3. Äëÿ íåïðåðûâíîé âåëè÷èíû p-êâàíòèëü - ýòî òî çíà÷åíèå ïåðåìåííîé, íèæå êîòîðîãî ëåæèò ð-ÿ äîëÿ ðàñïðåäåëåíèÿ. 4. Ïðîöåíòèëü - ýòî êâàíòèëü, âûðàæåííûé â ïðîöåíòàõ. |
en quantile fr quantile |
|
Êâàíòèëü ïîðÿäêà p = 0,5. |
en median fr mediane |
|
Êâàíòèëü ïîðÿäêà p = 0,25 èëè p = 0,75. |
en quartile fr quartile |
|
Çíà÷åíèå ñëó÷àéíîé âåëè÷èíû, ïðè êîòîðîì ôóíêöèÿ ðàñïðåäåëåíèÿ âåðîÿòíîñòåé ìàññ èëè ïëîòíîñòü ðàñïðåäåëåíèÿ âåðîÿòíîñòåé èìååò ìàêñèìóì. Ïðèìå÷àíèå - Åñëè èìååòñÿ åäèíñòâåííàÿ ìîäà, òî ðàñïðåäåëåíèå âåðîÿòíîñòåé ñëó÷àéíîé âåëè÷èíû íàçûâàåòñÿ óíèìîäàëüíûì; åñëè èìååòñÿ áîëåå ÷åì îäíà ìîäà, îíî íàçûâàåòñÿ ìíîãîìîäàëüíûì, â ñëó÷àå äâóõ ìîä - áèìîäàëüíûì. |
en mode fr mode |
|
1.18. ìàòåìàòè÷åñêîå îæèäàíèå (ñëó÷àéíîé âåëè÷èíû) à) Äëÿ äèñêðåòíîé ñëó÷àéíîé âåëè÷èíû X, ïðèíèìàþùåé çíà÷åíèÿ xi ñ âåðîÿòíîñòÿìè pi, ìàòåìàòè÷åñêîå îæèäàíèå, åñëè îíî ñóùåñòâóåò, îïðåäåëÿþò ôîðìóëîé
ãäå ñóììèðóþò âñå çíà÷åíèÿ xi, êîòîðûå ìîæåò ïðèíèìàòü ñëó÷àéíàÿ âåëè÷èíà X. b) Äëÿ íåïðåðûâíîé ñëó÷àéíîé âåëè÷èíû X, èìåþùåé ïëîòíîñòü f (x), ìàòåìàòè÷åñêîå îæèäàíèå, åñëè îíî ñóùåñòâóåò, îïðåäåëÿþò ôîðìóëîé
ãäå èíòåãðàë áåðóò ïî âñåìó èíòåðâàëó (èíòåðâàëàì) èçìåíåíèÿ Õ. |
en expectation; expected value; mean fr esperance mathematique; valeur esperee; moyenne |
|
1.19. ìàðãèíàëüíîå ìàòåìàòè÷åñêîå îæèäàíèå Ìàòåìàòè÷åñêîå îæèäàíèå ìàðãèíàëüíîãî ðàñïðåäåëåíèÿ ñëó÷àéíîé âåëè÷èíû. |
en marginal expectation fr esperance mathematique marginale |
|
1.20. óñëîâíîå ìàòåìàòè÷åñêîå îæèäàíèå Ìàòåìàòè÷åñêîå îæèäàíèå óñëîâíîãî ðàñïðåäåëåíèÿ ñëó÷àéíîé âåëè÷èíû. |
en conditional expectation fr esperance mathematique conditionnelle |
|
1.21. öåíòðèðîâàííàÿ ñëó÷àéíàÿ âåëè÷èíà Ñëó÷àéíàÿ âåëè÷èíà, ìàòåìàòè÷åñêîå îæèäàíèå êîòîðîé ðàâíî íóëþ. Ïðèìå÷àíèå - Åñëè ñëó÷àéíàÿ âåëè÷èíà Õ èìååò ìàòåìàòè÷åñêîå îæèäàíèå m, òî ñîîòâåòñòâóþùàÿ öåíòðèðîâàííàÿ ñëó÷àéíàÿ âåëè÷èíà ðàâíà X - m. |
en centered random variable fr variable aleatoire centree |
|
1.22. äèñïåðñèÿ (ñëó÷àéíîé âåëè÷èíû) Ìàòåìàòè÷åñêîå îæèäàíèå êâàäðàòà öåíòðèðîâàííîé ñëó÷àéíîé âåëè÷èíû
|
en variance fr variance |
|
1.23. ñòàíäàðòíîå îòêëîíåíèå (ñëó÷àéíîé âåëè÷èíû) Ïîëîæèòåëüíûé êâàäðàòíûé êîðåíü èç çíà÷åíèÿ äèñïåðñèè
|
en standard deviation fr ecart-type |
|
1.24. êîýôôèöèåíò âàðèàöèè (ñëó÷àéíîé âåëè÷èíû) Îòíîøåíèå ñòàíäàðòíîãî îòêëîíåíèÿ ê àáñîëþòíîìó çíà÷åíèþ ìàòåìàòè÷åñêîãî îæèäàíèÿ ñëó÷àéíîé âåëè÷èíû
|
en coefficient of variation fr coefficient de variation |
|
1.25. ñòàíäàðòèçîâàííàÿ ñëó÷àéíàÿ âåëè÷èíà Ñëó÷àéíàÿ âåëè÷èíà, ìàòåìàòè÷åñêîå îæèäàíèå êîòîðîé ðàâíî íóëþ, à ñòàíäàðòíîå îòêëîíåíèå - åäèíèöå. Ïðèìå÷àíèÿ 1. Åñëè ñëó÷àéíàÿ âåëè÷èíà X èìååò ìàòåìàòè÷åñêîå îæèäàíèå m è ñòàíäàðòíîå îòêëîíåíèå s, òî ñîîòâåòñòâóþùàÿ ñòàíäàðòèçîâàííàÿ ñëó÷àéíàÿ âåëè÷èíà ðàâíà
Ðàñïðåäåëåíèå ñòàíäàðòèçîâàííîé ñëó÷àéíîé âåëè÷èíû íàçûâàåòñÿ ñòàíäàðòíûì ðàñïðåäåëåíèåì. 2. Ïîíÿòèå ñòàíäàðòèçîâàííîé ñëó÷àéíîé âåëè÷èíû ÿâëÿåòñÿ ÷àñòíûì ñëó÷àåì «ïðèâåäåííîé ñëó÷àéíîé âåëè÷èíû», îïðåäåëÿåìîé îòíîñèòåëüíî öåíòðàëüíîãî çíà÷åíèÿ è ïàðàìåòðà ìàñøòàáà, îòëè÷íûõ îò ìàòåìàòè÷åñêîãî îæèäàíèÿ è ñòàíäàðòíîãî îòêëîíåíèÿ. |
en standardized random variable fr variable aleatoire centree reduite |
|
1.26. ìîìåíò1) ïîðÿäêà q îòíîñèòåëüíî íà÷àëà îòñ÷åòà Ìàòåìàòè÷åñêîå îæèäàíèå ñëó÷àéíîé âåëè÷èíû â ñòåïåíè q äëÿ îäíîìåðíîãî ðàñïðåäåëåíèÿ
Ïðèìå÷àíèå - Ìîìåíò ïåðâîãî ïîðÿäêà - ìàòåìàòè÷åñêîå îæèäàíèå ñëó÷àéíîé âåëè÷èíû Õ. |
en moment of order q about the origin fr moment d’ordre q par rapport a l’origine |
|
1.27. ìîìåíò1) ïîðÿäêà q îòíîñèòåëüíî à Ìàòåìàòè÷åñêîå îæèäàíèå âåëè÷èíû (X - à) â ñòåïåíè q äëÿ îäíîìåðíîãî ðàñïðåäåëåíèÿ
|
en moment of order q about an origin a fr moment d’ordre q a partir d’une origine a |
|
1.28. öåíòðàëüíûé ìîìåíò ïîðÿäêà q Ìàòåìàòè÷åñêîå îæèäàíèå öåíòðèðîâàííîé ñëó÷àéíîé âåëè÷èíû äëÿ îäíîìåðíîãî ðàñïðåäåëåíèÿ
Ïðèìå÷àíèå - Öåíòðàëüíûé ìîìåíò âòîðîãî ïîðÿäêà - äèñïåðñèÿ ñëó÷àéíîé âåëè÷èíû Õ. |
en central moment of order q fr moment centre d’ordre q |
|
1.29. ñîâìåñòíûé ìîìåíò1) ïîðÿäêîâ q è s îòíîñèòåëüíî íà÷àëà îòñ÷åòà Ìàòåìàòè÷åñêîå îæèäàíèå ïðîèçâåäåíèÿ ñëó÷àéíîé âåëè÷èíû Õ â ñòåïåíè q è ñëó÷àéíîé âåëè÷èíû Y â ñòåïåíè s äëÿ äâóìåðíîãî ðàñïðåäåëåíèÿ
Ïðèìå÷àíèå - Ñîâìåñòíûé ìîìåíò ïîðÿäêîâ 1 è 0 - ìàðãèíàëüíîå ìàòåìàòè÷åñêîå îæèäàíèå ñëó÷àéíîé âåëè÷èíû X. Ñîâìåñòíûé ìîìåíò ïîðÿäêîâ 0 è 1 - ìàðãèíàëüíîå ìàòåìàòè÷åñêîå îæèäàíèå ñëó÷àéíîé âåëè÷èíû Y. |
en joint moment of orders q and s about the origin fr moment d’ordres q et s a partir de l’origine |
|
1.30. ñîâìåñòíûé ìîìåíò1) ïîðÿäêîâ q è s îòíîñèòåëüíî òî÷êè (à, b) Ìàòåìàòè÷åñêîå îæèäàíèå ïðîèçâåäåíèÿ ñëó÷àéíîé âåëè÷èíû (X - à) â ñòåïåíè q è ñëó÷àéíîé âåëè÷èíû (Y - b) â ñòåïåíè s äëÿ äâóìåðíîãî ðàñïðåäåëåíèÿ:
|
en joint moment of orders q and s about an origin (a, b) fr moment d’ordres q et s a partir d’une origine (a, b) |
|
1.31. ñîâìåñòíûé öåíòðàëüíûé ìîìåíò1) ïîðÿäêîâ q è s Ìàòåìàòè÷åñêîå îæèäàíèå ïðîèçâåäåíèÿ öåíòðèðîâàííîé ñëó÷àéíîé âåëè÷èíû (X - mx) â ñòåïåíè q è öåíòðèðîâàííîé ñëó÷àéíîé âåëè÷èíû (Y - my)â ñòåïåíè s äëÿ äâóìåðíîãî ðàñïðåäåëåíèÿ:
Ïðèìå÷àíèå - Ñîâìåñòíûé öåíòðàëüíûé ìîìåíò ïîðÿäêîâ 2 è 0 - äèñïåðñèÿ ìàðãèíàëüíîãî ðàñïðåäåëåíèÿ X. Ñîâìåñòíûé öåíòðàëüíûé ìîìåíò ïîðÿäêîâ 0 è 2 - äèñïåðñèÿ ìàðãèíàëüíîãî ðàñïðåäåëåíèÿ Y. 1) Åñëè ïðè îïðåäåëåíèè ìîìåíòîâ çíà÷åíèÿ ñëó÷àéíûõ âåëè÷èí X, X - a, Y, Y - b è ò.ä. çàìåíÿþò íà èõ àáñîëþòíûå çíà÷åíèÿ |Õ|, |Õ - à|, |Y|, |Y - b| è ò.ä., òî ìîìåíòû íàçûâàþò «àáñîëþòíûìè ìîìåíòàìè». |
en joint central moment of orders q and s fr moment centre d’ordres q et s |
|
1.32. êîâàðèàöèÿ; êîððåëÿöèîííûé ìîìåíò Ñîâìåñòíûé öåíòðàëüíûé ìîìåíò ïîðÿäêîâ 1 è 1:
|
en covariance fr covariance |
|
Îòíîøåíèå êîâàðèàöèè äâóõ ñëó÷àéíûõ âåëè÷èí ê ïðîèçâåäåíèþ èõ ñòàíäàðòíûõ îòêëîíåíèé:
Ïðèìå÷àíèÿ 1. Ýòà âåëè÷èíà âñåãäà áóäåò ïðèíèìàòü çíà÷åíèÿ îò ìèíóñ 1 äî ïëþñ 1, âêëþ÷àÿ êðàéíèå çíà÷åíèÿ. 2. Åñëè äâå ñëó÷àéíûå âåëè÷èíû íåçàâèñèìû, êîýôôèöèåíò êîððåëÿöèè ìåæäó íèìè ðàâåí íóëþ òîëüêî â ñëó÷àå äâóìåðíîãî íîðìàëüíîãî ðàñïðåäåëåíèÿ. |
en correlation coefficient fr coefficient de correlation |
|
1.34. êðèâàÿ ðåãðåññèè (Y ïî X) Äëÿ äâóõ ñëó÷àéíûõ âåëè÷èí Õ è Y êðèâàÿ, îòîáðàæàþùàÿ çàâèñèìîñòü óñëîâíîãî ìàòåìàòè÷åñêîãî îæèäàíèÿ ñëó÷àéíîé âåëè÷èíû Y ïðè óñëîâèè Õ = õ äëÿ êàæäîé ïåðåìåííîé õ. Ïðèìå÷àíèå - Åñëè êðèâàÿ ðåãðåññèè Y ïî X ïðåäñòàâëÿåò ñîáîé ïðÿìóþ ëèíèþ, òî ðåãðåññèþ íàçûâàþò «ïðîñòîé ëèíåéíîé».  ýòîì ñëó÷àå êîýôôèöèåíò ëèíåéíîé ðåãðåññèè Y ïî Õ - ýòî êîýôôèöèåíò íàêëîíà ïåðåä õ â óðàâíåíèè ëèíèè ðåãðåññèè. |
en regression curve fr courbe de regression |
|
1.35. ïîâåðõíîñòü ðåãðåññèè (Z ïî Õ è Y) Äëÿ òðåõ ñëó÷àéíûõ âåëè÷èí X, Y, Z ïîâåðõíîñòü, îòîáðàæàþùàÿ çàâèñèìîñòü óñëîâíîãî ìàòåìàòè÷åñêîãî îæèäàíèÿ ñëó÷àéíîé âåëè÷èíû Z ïðè óñëîâèè Õ = õ è Y = y äëÿ êàæäîé ïàðû ïåðåìåííûõ (õ, ó). Ïðèìå÷àíèÿ 1. Åñëè ïîâåðõíîñòü ðåãðåññèè ïðåäñòàâëÿåò ñîáîé ïëîñêîñòü, òî ðåãðåññèþ íàçûâàþò «ëèíåéíîé».  ýòîì ñëó÷àå êîýôôèöèåíò ëèíåéíîé ðåãðåññèè Z ïî Õ - ýòî êîýôôèöèåíò ïåðåä õ â óðàâíåíèè ðåãðåññèè. 2. Îïðåäåëåíèå ìîæíî ðàñïðîñòðàíèòü íà ÷èñëî ñëó÷àéíûõ âåëè÷èí áîëåå òðåõ. |
en regression surface fr surface de regression |
|
1.36. ðàâíîìåðíîå ðàñïðåäåëåíèå; ïðÿìîóãîëüíîå ðàñïðåäåëåíèå à) Ðàñïðåäåëåíèå âåðîÿòíîñòåé íåïðåðûâíîé ñëó÷àéíîé âåëè÷èíû, ïëîòíîñòü ðàñïðåäåëåíèÿ âåðîÿòíîñòè êîòîðîé ïîñòîÿííà íà êîíå÷íîì èíòåðâàëå [à, b] è ðàâíà íóëþ âíå åãî. b) Ðàñïðåäåëåíèå âåðîÿòíîñòåé äèñêðåòíîé ñëó÷àéíîé âåëè÷èíû òàêîå, ÷òî
äëÿ i = 1, 2, ..., n. Ïðèìå÷àíèå - Ðàâíîìåðíîå ðàñïðåäåëåíèå äèñêðåòíîé ñëó÷àéíîé âåëè÷èíû èìååò ðàâíûå âåðîÿòíîñòè äëÿ êàæäîãî èç ï çíà÷åíèé, òî åñòü
äëÿ j = 1, 2, ..., n. |
en uniform distribution; rectangular distribution fr loi uniforme; loi rectangulare |
|
1.37. íîðìàëüíîå ðàñïðåäåëåíèå; ðàñïðåäåëåíèå Ëàïëàñà - Ãàóññà Ðàñïðåäåëåíèå âåðîÿòíîñòåé íåïðåðûâíîé ñëó÷àéíîé âåëè÷èíû Õ òàêîå, ÷òî ïëîòíîñòü ðàñïðåäåëåíèÿ âåðîÿòíîñòåé ïðè - ¥ < õ < + ¥ ïðèíèìàåò äåéñòâèòåëüíîå çíà÷åíèå
Ïðèìå÷àíèå - m - ìàòåìàòè÷åñêîå îæèäàíèå; s - ñòàíäàðòíîå îòêëîíåíèå íîðìàëüíîãî ðàñïðåäåëåíèÿ. |
en normal distribution; Laplace - Gauss distribution fr loi normale; loi de Laplace - Gauss |
|
1.38. ñòàíäàðòíîå íîðìàëüíîå ðàñïðåäåëåíèå; ñòàíäàðòíîå ðàñïðåäåëåíèå Ëàïëàñà - Ãàóññà Ðàñïðåäåëåíèå âåðîÿòíîñòåé ñòàíäàðòèçîâàííîé íîðìàëüíîé ñëó÷àéíîé âåëè÷èíû U, ïëîòíîñòü ðàñïðåäåëåíèÿ êîòîðîé
ïðè - ¥ < u < + ¥ (ï. 1.25, ïðèìå÷àíèå 1). |
en standardized normal distribution; standardized Laplace - Gauss distribution fr loi normale reduite; loi de Laplace - Gauss reduite |
|
Ðàñïðåäåëåíèå âåðîÿòíîñòåé íåïðåðûâíîé ñëó÷àéíîé âåëè÷èíû, ïðèíèìàþùåé çíà÷åíèÿ îò 0 äî + ¥, ïëîòíîñòü ðàñïðåäåëåíèÿ âåðîÿòíîñòåé êîòîðîé
ãäå c2 ³ 0 ïðè çíà÷åíèè ïàðàìåòðà n = 1, 2,...; à - ãàììà-ôóíêöèÿ. Ïðèìå÷àíèÿ 1. Ñóììà êâàäðàòîâ n íåçàâèñèìûõ ñòàíäàðòèçîâàííûõ íîðìàëüíûõ ñëó÷àéíûõ âåëè÷èí îáðàçóåò ñëó÷àéíóþ âåëè÷èíó c2 ñ ïàðàìåòðîì n; n íàçûâàþò ñòåïåíüþ ñâîáîäû ñëó÷àéíîé âåëè÷èíû c2. 2. Ðàñïðåäåëåíèå âåðîÿòíîñòåé ñëó÷àéíîé âåëè÷èíû c2/2 - ýòî ãàììà-ðàñïðåäåëåíèå ñ ïàðàìåòðîì m = n/2. |
en chi-squared distribution; c2-distribution fr loi de chi carre; loi de c2 |
|
1.40. t-ðàñïðåäåëåíèå; ðàñïðåäåëåíèå Ñòüþäåíòà Ðàñïðåäåëåíèå âåðîÿòíîñòåé íåïðåðûâíîé ñëó÷àéíîé âåëè÷èíû, ïëîòíîñòü ðàñïðåäåëåíèÿ âåðîÿòíîñòåé êîòîðîé
ãäå - ¥ < t < + ¥ ñ ïàðàìåòðîì n = 1, 2,...; à - ãàììà-ôóíêöèÿ. Ïðèìå÷àíèå - Îòíîøåíèå äâóõ íåçàâèñèìûõ ñëó÷àéíûõ âåëè÷èí, ÷èñëèòåëü êîòîðîãî - ñòàíäàðòèçîâàííàÿ íîðìàëüíàÿ ñëó÷àéíàÿ âåëè÷èíà, à çíàìåíàòåëü - ïîëîæèòåëüíîå çíà÷åíèå êâàäðàòíîãî êîðíÿ èç ÷àñòíîãî îò äåëåíèÿ ñëó÷àéíîé âåëè÷èíû c2 íà åå ÷èñëî ñòåïåíåé ñâîáîäû n - ýòî ðàñïðåäåëåíèå Ñòüþäåíòà ñ v ñòåïåíÿìè ñâîáîäû. |
en t-distribution; Students distribution fr loi de t; loi de Student |
|
1.41. F-ðàñïðåäåëåíèå Ðàñïðåäåëåíèå âåðîÿòíîñòåé íåïðåðûâíîé ñëó÷àéíîé âåëè÷èíû, ïðèíèìàþùåé çíà÷åíèÿ îò 0 äî +°î, ïëîòíîñòü ðàñïðåäåëåíèÿ âåðîÿòíîñòåé êîòîðîé
ãäå F ³ 0 ñ ïàðàìåòðàìè n1 = 1, 2,...; n2 = 1, 2,...; à - ãàììà-ôóíêöèÿ. Ïðèìå÷àíèå - Ýòî ðàñïðåäåëåíèå îòíîøåíèÿ äâóõ íåçàâèñèìûõ ñëó÷àéíûõ âåëè÷èí ñ ðàñïðåäåëåíèÿìè c2, â êîòîðîì äåëèìîå è äåëèòåëü ðàçäåëåíû íà ñâîè ÷èñëà ñòåïåíåé ñâîáîäû. ×èñëî ñòåïåíåé ñâîáîäû ÷èñëèòåëÿ ðàâíî n1, à çíàìåíàòåëÿ - n2.  òàêîì ïîðÿäêå è çàïèñûâàþò ÷èñëà ñòåïåíåé ñâîáîäû ñëó÷àéíîé âåëè÷èíû ñ ðàñïðåäåëåíèåì F. |
en F-distribution fr loi de F |
|
1.42 ëîãàðèôìè÷åñêè íîðìàëüíîå ðàñïðåäåëåíèå Ðàñïðåäåëåíèå âåðîÿòíîñòåé íåïðåðûâíîé ñëó÷àéíîé âåëè÷èíû X, êîòîðàÿ ìîæåò ïðèíèìàòü ëþáûå çíà÷åíèÿ îò à äî + ¥ è ïëîòíîñòü ðàñïðåäåëåíèÿ âåðîÿòíîñòè êîòîðîé
ãäå x > a; m è s - ñîîòâåòñòâåííî ìàòåìàòè÷åñêîå îæèäàíèå è ñòàíäàðòíîå îòêëîíåíèå ñëó÷àéíîé âåëè÷èíû . Ïðèìå÷àíèÿ 1. Ðàñïðåäåëåíèå âåðîÿòíîñòåé ñëó÷àéíîé âåëè÷èíû - ýòî íîðìàëüíîå ðàñïðåäåëåíèå; m è s - ñîîòâåòñòâåííî ìàòåìàòè÷åñêîå îæèäàíèå è ñòàíäàðòíîå îòêëîíåíèå ýòîé ñëó÷àéíîé âåëè÷èíû. 2. Ïàðàìåòðû m è s - ýòî íå ëîãàðèôìû ìàòåìàòè÷åñêîãî îæèäàíèÿ è ñòàíäàðòíîãî îòêëîíåíèÿ X. 3. ×àñòî âìåñòî îáîçíà÷åíèÿ loge (èëè ln) èñïîëüçóþò log10.  ýòîì ñëó÷àå
ãäå m è s - ñîîòâåòñòâåííî ìàòåìàòè÷åñêîå îæèäàíèå è ñòàíäàðòíîå îòêëîíåíèå ;
|
en log-normal distribution fr loi log-normale |
|
1.43. ýêñïîíåíöèàëüíîå ðàñïðåäåëåíèå Ðàñïðåäåëåíèå âåðîÿòíîñòåé íåïðåðûâíîé ñëó÷àéíîé âåëè÷èíû X, êîòîðàÿ ìîæåò ïðèíèìàòü ëþáûå çíà÷åíèÿ îò 0 äî + ¥ è ïëîòíîñòü ðàñïðåäåëåíèÿ êîòîðîé
ïðè õ ³ 0 è ïàðàìåòðå , ãäå b - ïàðàìåòð ìàñøòàáà. Ïðèìå÷àíèå - Òàêîå ðàñïðåäåëåíèå âåðîÿòíîñòåé ìîæíî îáîáùèòü ïîäñòàíîâêîé (õ - à) âìåñòî õ ïðè õ ³ à. |
en exponential distribution fr loi exponentielle |
|
Ðàñïðåäåëåíèå âåðîÿòíîñòåé íåïðåðûâíîé ñëó÷àéíîé âåëè÷èíû X, êîòîðàÿ ìîæåò ïðèíèìàòü ëþáûå çíà÷åíèÿ îò 0 äî + ¥ è ïëîòíîñòü âåðîÿòíîñòè êîòîðîé
ïðè õ ³ 0 è ïàðàìåòðàõ m > 0, a > 0; ãäå Ã - ãàììà-ôóíêöèÿ
Ïðèìå÷àíèÿ 1. Ïðè m öåëîì èìååì: à (m) = (m - 1)! 2. Ïàðàìåòð m îïðåäåëÿåò ôîðìó ðàñïðåäåëåíèÿ. Ïðè m = 1 ãàììà-ðàñïðåäåëåíèå ïðåâðàùàåòñÿ â ýêñïîíåíöèàëüíîå ðàñïðåäåëåíèå. 3. Ñóììà m íåçàâèñèìûõ ñëó÷àéíûõ âåëè÷èí, ïîä÷èíÿþùèõñÿ ýêñïîíåíöèàëüíîìó çàêîíó ðàñïðåäåëåíèÿ ñ ïàðàìåòðîì - ýòî ãàììà-ðàñïðåäåëåíèå ñ ïàðàìåòðàìè m è a. |
en gamma distribution fr loi gamma |
|
Ðàñïðåäåëåíèå âåðîÿòíîñòåé íåïðåðûâíîé ñëó÷àéíîé âåëè÷èíû X, êîòîðàÿ ìîæåò ïðèíèìàòü ëþáûå çíà÷åíèÿ îò 0 äî 1, âêëþ÷àÿ ãðàíèöû, è ïëîòíîñòü ðàñïðåäåëåíèÿ êîòîðîé
ïðè 0 £ x £ 1 è ïàðàìåòðàõ m1 > 0, m2 > 0, ãäå à - ãàììà-ôóíêöèÿ. Ïðèìå÷àíèå - Ïðè m1 = m2 = 1 áåòà-ðàñïðåäåëåíèå ïåðåõîäèò â ðàâíîìåðíîå ðàñïðåäåëåíèå ñ ïàðàìåòðàìè a = 0 è b = 1. |
en beta distribution fr loi beta |
|
1.46. ðàñïðåäåëåíèå Ãóìáåëÿ; ðàñïðåäåëåíèå ýêñòðåìàëüíûõ çíà÷åíèé òèïà I Ðàñïðåäåëåíèå âåðîÿòíîñòåé íåïðåðûâíîé ñëó÷àéíîé âåëè÷èíû Õ ñ ôóíêöèåé ðàñïðåäåëåíèÿ:
ãäå - ¥ < õ < + ¥;
à ïàðàìåòðû - ¥ < a < + ¥, b > 0. |
en Gumbel distribution; type I extreme value distribution fr loi de Gumbel; loi des valeurs extremes de type I |
|
1.47. ðàñïðåäåëåíèå Ôðåøý; ðàñïðåäåëåíèå ýêñòðåìàëüíûõ çíà÷åíèé òèïà II Ðàñïðåäåëåíèå âåðîÿòíîñòåé íåïðåðûâíîé ñëó÷àéíîé âåëè÷èíû Õ ñ ôóíêöèåé ðàñïðåäåëåíèÿ:
ãäå õ ³ à;
à ïàðàìåòðû - ¥ < a < + ¥, k > 0, b > 0. Ïðèìå÷àíèå - Ïàðàìåòð k îïðåäåëÿåò ôîðìó ðàñïðåäåëåíèÿ. |
en Frechet distribution; type II extreme value distribution fr loi de Frechet; loi des valeurs extremes de type II |
|
1.48. ðàñïðåäåëåíèå Âåéáóëëà; ðàñïðåäåëåíèå ýêñòðåìàëüíûõ çíà÷åíèé òèïà III Ðàñïðåäåëåíèå âåðîÿòíîñòåé íåïðåðûâíîé ñëó÷àéíîé âåëè÷èíû Õ ñ ôóíêöèåé ðàñïðåäåëåíèÿ:
ãäå õ ³ à; y = (x - a)/b; à ïàðàìåòðû - ¥ < a < + ¥, k > 0, b > 0. Ïðèìå÷àíèå - Ïàðàìåòð k îïðåäåëÿåò ôîðìó ðàñïðåäåëåíèÿ |
en Weibull distribution; tupe III extreme value distribution fr loi de Weibull; loi des valeurs extremes de type III |
|
1.49. áèíîìèàëüíîå ðàñïðåäåëåíèå Ðàñïðåäåëåíèå âåðîÿòíîñòåé äèñêðåòíîé ñëó÷àéíîé âåëè÷èíû X, ïðèíèìàþùåé ëþáûå öåëûå çíà÷åíèÿ îò 0 äî n, òàêîå ÷òî
ïðè õ = 0, 1, 2,..., n è ïàðàìåòðàõ n = 1, 2,... è 0 < p < 1, ãäå |
en binomial distribution fr loi binomiale |
|
1.50. îòðèöàòåëüíîå áèíîìèàëüíîå ðàñïðåäåëåíèå Ðàñïðåäåëåíèå âåðîÿòíîñòåé äèñêðåòíîé ñëó÷àéíîé âåëè÷èíû Õ òàêîå, ÷òî
ïðè x = 0, 1, 2, … è ïàðàìåòðàõ c > 0 (öåëîå ïîëîæèòåëüíîå ÷èñëî), 0 < p < 1, ãäå Ïðèìå÷àíèÿ 1. Íàçâàíèå «îòðèöàòåëüíîå áèíîìèàëüíîå ðàñïðåäåëåíèå» ñâÿçàíî ñ òåì, ÷òî ïîñëåäîâàòåëüíûå âåðîÿòíîñòè ïðè õ = 0, 1, 2, … ïîëó÷àþò ïðè ðàçëîæåíèè áèíîìà ñ îòðèöàòåëüíûì ïîêàçàòåëåì ñòåïåíè (- ñ):
ïîñëåäîâàòåëüíûõ ïîëîæèòåëüíûõ öåëûõ ñòåïåíåé âåëè÷èíû (1 - ð). 2. Êîãäà ïàðàìåòð ñ ðàâåí 1, ðàñïðåäåëåíèå íàçûâàþò ãåîìåòðè÷åñêèì ðàñïðåäåëåíèåì. |
en negative binomial distribution fr loi binomiale negative |
|
Ðàñïðåäåëåíèå âåðîÿòíîñòåé äèñêðåòíîé ñëó÷àéíîé âåëè÷èíû Õ òàêîå, ÷òî
ïðè õ = 0, 1, 2, ... è ïàðàìåòðå m > 0. Ïðèìå÷àíèÿ 1. Ìàòåìàòè÷åñêîå îæèäàíèå è äèñïåðñèÿ ðàñïðåäåëåíèÿ Ïóàññîíà îáà ðàâíû ïàðàìåòðó m. 2. Ðàñïðåäåëåíèå Ïóàññîíà ìîæíî èñïîëüçîâàòü äëÿ àïïðîêñèìàöèè áèíîìèàëüíîãî ðàñïðåäåëåíèÿ, êîãäà n - âåëèêî, p - ìàëî, à ïðîèçâåäåíèå ïð = m. |
en Poission distribution fr loi de Poisson |
|
1.52. ãèïåðãåîìåòðè÷åñêîå ðàñïðåäåëåíèå Äèñêðåòíîå ðàñïðåäåëåíèå âåðîÿòíîñòåé ñ ôóíêöèåé ðàñïðåäåëåíèÿ:
ãäå õ = max (0, Ì - N + n), ..., max (0, Ì - N + n) + 1, ..., min (Ì, n); ïàðàìåòðû N = 1, 2,...; Ì = 0, 1, 2, ..., N; n = 1, 2,..., N è è ò.ï. Ïðèìå÷àíèå - Ýòî ðàñïðåäåëåíèå âîçíèêàåò êàê ðàñïðåäåëåíèå âåðîÿòíîñòåé ÷èñëà óñïåõîâ â âûáîðêå îáúåìà n, âçÿòîé áåç âîçâðàùåíèÿ èç ãåíåðàëüíîé ñîâîêóïíîñòè îáúåìà N, ñîäåðæàùèé Ì óñïåõîâ. |
en hypergeometric distribution fr loi hypergeometrique |
|
1.53. äâóìåðíîå íîðìàëüíîå ðàñïðåäåëåíèå; äâóìåðíîå ðàñïðåäåëåíèå Ëàïëàñà - Ãàóññà Ðàñïðåäåëåíèå âåðîÿòíîñòåé äâóõ íåïðåðûâíûõ ñëó÷àéíûõ âåëè÷èí Õ è Y òàêîå, ÷òî ïëîòíîñòü ðàñïðåäåëåíèÿ âåðîÿòíîñòåé
ïðè - ¥ < x < + ¥ è - ¥ < ó < + ¥, ãäå mx è my - ìàòåìàòè÷åñêèå îæèäàíèÿ; sx è sy - ñòàíäàðòíûå îòêëîíåíèÿ ìàðãèíàëüíûõ ðàñïðåäåëåíèé Õ è Y, êîòîðûå íîðìàëüíû; r - êîýôôèöèåíò êîððåëÿöèè Õ è Y. Ïðèìå÷àíèå - Ýòî ïîíÿòèå ìîæíî ðàñïðîñòðàíèòü íà ìíîãîìåðíîå ðàñïðåäåëåíèå áîëåå äâóõ ñëó÷àéíûõ âåëè÷èí òàêèõ, ÷òî ìàðãèíàëüíîå ðàñïðåäåëåíèå ëþáîé èõ ïàðû ìîæåò áûòü ïðåäñòàâëåíî â òîé ôîðìå, ÷òî ïðèâåäåíà âûøå. |
en bivariate normal distribution; bivariate Laplace - Gauss distribution fr loi normale a deux variables; loi de Laplace - Gauss a deux variables |
|
Ðàñïðåäåëåíèå âåðîÿòíîñòåé ïàðû ñòàíäàðòèçîâàííûõ íîðìàëüíûõ ñëó÷àéíûõ âåëè÷èí
ñ ïëîòíîñòüþ ðàñïðåäåëåíèÿ
ãäå - ¥ < u < + ¥ è - ¥ < v < + ¥, (X, Y) - ïàðà íîðìàëüíûõ ñëó÷àéíûõ âåëè÷èí ñ ïàðàìåòðàìè (mx, my) è (sx, sy) è r; r - êîýôôèöèåíò êîððåëÿöèè Õ è Y, à òàêæå U è V. Ïðèìå÷àíèå - Ýòî ïîíÿòèå ìîæíî ðàñïðîñòðàíèòü íà ìíîãîìåðíîå ðàñïðåäåëåíèå áîëåå äâóõ ñëó÷àéíûõ âåëè÷èí, òàêèõ ÷òî ìàðãèíàëüíîå ðàñïðåäåëåíèå ëþáîé èõ ïàðû ìîæåò áûòü ïðåäñòàâëåíî â òîé æå ôîðìå, ÷òî ïðèâåäåíà âûøå. |
en standardized bivariate normal distribution; standardized bivariate Laplace - Gauss distribution fr loi normale reduite a deux variables; loi de Laplace - Gauss reduite a deux variables |
|
1.55. ðàñïðåäåëåíèå ìíîãîìåðíîé ñëó÷àéíîé âåëè÷èíû; ìóëüòèíîìèàëüíîå ðàñïðåäåëåíèå Ðàñïðåäåëåíèå âåðîÿòíîñòåé k äèñêðåòíûõ ñëó÷àéíûõ âåëè÷èí Õ1, Õ2, ..., Õk òàêîå, ÷òî
ãäå x1, x2, ..., xk - öåëûå ÷èñëà, òàêèå ÷òî x1 + x2 + ... + xk = n, ñ ïàðàìåòðàìè pi ³ 0 (i = 1, 2,..., k) è , ãäå k = 2, 3, ... Ïðèìå÷àíèå - Ðàñïðåäåëåíèå ìíîãîìåðíîé ñëó÷àéíîé âåëè÷èíû - îáîáùåíèå áèíîìèàëüíîãî ðàñïðåäåëåíèÿ (ï. 1.49) íà ðàñïðåäåëåíèå k > 2 ñëó÷àéíûõ âåëè÷èí. |
en multinomial distribution fr loi multinomiale |
|
2. ÎÁÙÈÅ ÑÒÀÒÈÑÒÈ×ÅÑÊÈÅ ÒÅÐÌÈÍÛ |
|
|
Òî, ÷òî ìîæíî ðàññìîòðåòü è îïèñàòü èíäèâèäóàëüíî. Ïðèìå÷àíèå - Åäèíèöåé ìîæåò, íàïðèìåð, áûòü: - èçäåëèå; - îïðåäåëåííîå êîëè÷åñòâî ìàòåðèàëà; - óñëóãà, äåéñòâèå èëè ïðîöåññ; - îðãàíèçàöèÿ èëè ÷åëîâåê; - íåêîòîðàÿ èõ êîìáèíàöèÿ. |
en item; entity fr individu; entite |
|
Ñâîéñòâî, êîòîðîå ïîìîãàåò èäåíòèôèöèðîâàòü èëè ðàçëè÷àòü åäèíèöû äàííîé ãåíåðàëüíîé ñîâîêóïíîñòè. Ïðèìå÷àíèå - Ïðèçíàê ìîæåò áûòü êîëè÷åñòâåííûì èëè êà÷åñòâåííûì (àëüòåðíàòèâíûì). |
en characteristic fr caractere |
|
2.3. (ãåíåðàëüíàÿ) ñîâîêóïíîñòü Ìíîæåñòâî âñåõ ðàññìàòðèâàåìûõ åäèíèö. Ïðèìå÷àíèå - Äëÿ ñëó÷àéíîé âåëè÷èíû ðàñïðåäåëåíèå âåðîÿòíîñòåé ðàññìàòðèâàþò êàê îïðåäåëåíèå ñîâîêóïíîñòè ýòîé ñëó÷àéíîé âåëè÷èíû. |
en population fr population |
|
Ñïèñîê, çàïîëíÿåìûé äëÿ âûáîðî÷íûõ öåëåé, â êîòîðîì îòìå÷àþò òå åäèíèöû, êîòîðûå íàäî îòîáðàòü è èññëåäîâàòü. |
en sampling frame fr base d’echantillonnage |
|
Îïðåäåëåííàÿ ÷àñòü ãåíåðàëüíîé ñîâîêóïíîñòè. |
en subpopulation fr sous-population |
|
Çíà÷åíèå äàííîãî ïðèçíàêà, ïîëó÷åííîãî â ðåçóëüòàòå åäèíè÷íîãî íàáëþäåíèÿ (ñì. ï. 3.6). |
en observed value fr valeur observee |
|
à) Äëÿ êà÷åñòâåííîãî ïðèçíàêà - Îïðåäåëåííûå ãðóïïû îáúåêòîâ, êàæäûå èç êîòîðûõ èìåþò îòäåëüíûå îáùèå ïðèçíàêè, âçàèìíî èñêëþ÷àþò äðóã äðóãà, èñ÷åðïûâàÿ âñå îáúåêòû. b) Äëÿ êîëè÷åñòâåííîãî ïðèçíàêà - Êàæäûé èç ïîñëåäîâàòåëüíûõ âçàèìîèñêëþ÷àþùèõ èíòåðâàëîâ, íà êîòîðûå ðàçäåëåí âåñü èíòåðâàë âàðüèðîâàíèÿ. |
en class fr classe |
|
2.8. ãðàíèöû êëàññà; ïðåäåëû êëàññà Çíà÷åíèÿ, îïðåäåëÿþùèå âåðõíþþ è íèæíþþ ãðàíèöû êëàññà. Ïðèìå÷àíèÿ 1. Ñëåäóåò óòî÷íèòü, êàêóþ èç äâóõ ãðàíèö ñ÷èòàþò ïðèíàäëåæàùåé êëàññó. 2. Åñëè âîçìîæíî, íàäî ÷òîáû ãðàíèöà êëàññà íå ñîâïàäàëà ñ âîçìîæíûì çíà÷åíèåì. |
en class limits; class boundaries fr limites de classe; frontieres de classe |
|
Ñðåäíåå àðèôìåòè÷åñêîå âåðõíåé è íèæíåé ãðàíèö êëàññà äëÿ êîëè÷åñòâåííîãî ïðèçíàêà. |
en mid-point of class fr centre de classe |
|
Ðàçíèöà ìåæäó âåðõíåé è íèæíåé ãðàíèöàìè êëàññà äëÿ êîëè÷åñòâåííîãî ïðèçíàêà. |
en class width fr largeur de classe |
|
×èñëî íàñòóïëåíèé ñîáûòèÿ äàííîãî òèïà èëè ÷èñëî íàáëþäåíèé, ïîïàâøèõ â äàííûé êëàññ. |
en frequency fr effectif |
|
2.12. íàêîïëåííàÿ êóìóëÿòèâíàÿ ÷àñòîòà ×èñëî íàáëþäåíèé èç ìíîæåñòâà, èìåþùèõ çíà÷åíèÿ, êîòîðûå ìåíüøå çàäàííîãî çíà÷åíèÿ èëè ðàâíû åìó. Ïðèìå÷àíèå - Äëÿ äàííûõ, îáúåäèíåííûõ â êëàññû, êóìóëÿòèâíóþ ÷àñòîòó ìîæíî óêàçàòü òîëüêî â ãðàíèöàõ êëàññà. |
en cumulative frequency fr effectif cumule |
|
×àñòîòà, äåëåííàÿ íà îáùåå ÷èñëî ñîáûòèé èëè íàáëþäåíèé. |
en relative frequency fr frequence |
|
2.14. êóìóëÿòèâíàÿ îòíîñèòåëüíàÿ ÷àñòîòà Êóìóëÿòèâíàÿ ÷àñòîòà, äåëåííàÿ íà îáùåå ÷èñëî íàáëþäåíèé. |
en cumulative relative frequency fr frequence cumule |
|
Ýìïèðè÷åñêîå îòíîøåíèå ìåæäó çíà÷åíèÿìè ïðèçíàêà è åãî ÷àñòîòàìè èëè åãî îòíîñèòåëüíûìè ÷àñòîòàìè. Ïðèìå÷àíèå - Ýòî ðàñïðåäåëåíèå ìîæíî ïðåäñòàâèòü ãðàôè÷åñêè â âèäå ãèñòîãðàììû, ñòîëáèêîâîé äèàãðàììû, ïîëèãîíà êóìóëÿòèâíûõ ÷àñòîò èëè êàê òàáëèöó ñîïðÿæåííîñòè äâóõ ïðèçíàêîâ. |
en frequency distribution fr distribution d’effectif |
|
2.16. îäíîìåðíîå ðàñïðåäåëåíèå ÷àñòîò Ðàñïðåäåëåíèå ÷àñòîò äëÿ åäèíñòâåííîãî ïðèçíàêà. |
en univariate frequency distribution fr distribution d’effectif a une variable |
|
Ãðàôè÷åñêîå ïðåäñòàâëåíèå ðàñïðåäåëåíèÿ ÷àñòîò äëÿ êîëè÷åñòâåííîãî ïðèçíàêà, îáðàçóåìîå ñîïðèêàñàþùèìèñÿ ïðÿìîóãîëüíèêàìè, îñíîâàíèÿìè êîòîðûõ ñëóæàò èíòåðâàëû êëàññîâ, à ïëîùàäè ïðîïîðöèîíàëüíû ÷àñòîòàì ýòèõ êëàññîâ. |
en histogram fr histogramme |
|
Ãðàôè÷åñêîå ïðåäñòàâëåíèå ðàñïðåäåëåíèÿ ÷àñòîò äëÿ äèñêðåòíîé ñëó÷àéíîé âåëè÷èíû, îáðàçóåìîå íàáîðîì ñòîëáöîâ ðàâíîé øèðèíû, âûñîòû êîòîðûõ ïðîïîðöèîíàëüíû ÷àñòîòàì. |
en bar chart; bar diagram fr diagramme en batons |
|
2.19. ïîëèãîí êóìóëÿòèâíûõ ÷àñòîò Ëîìàíàÿ ëèíèÿ, ïîëó÷àåìàÿ ïðè ñîåäèíåíèè òî÷åê, àáñöèññû êîòîðûõ ðàâíû âåðõíèì ãðàíèöàì êëàññîâ, à îðäèíàòû - ëèáî êóìóëÿòèâíûì àáñîëþòíûì ÷àñòîòàì, ëèáî êóìóëÿòèâíûì îòíîñèòåëüíûì ÷àñòîòàì. |
en cumulative frequency polygon fr polygone d’effectif cumule |
|
2.20. äâóìåðíîå ðàñïðåäåëåíèå ÷àñòîò Ýìïèðè÷åñêîå îòíîøåíèå ìåæäó ïàðàìè çíà÷åíèé èëè êëàññàìè ïðèçíàêîâ ñ îäíîé ñòîðîíû, è èõ ÷àñòîòàìè ñ äðóãîé - äëÿ äâóõ ïðèçíàêîâ, ðàññìàòðèâàåìûõ îäíîâðåìåííî. |
en bivariate frequency distribution fr distribution d’effectif a deux variables |
|
2.21. äèàãðàììà ðàçáðîñà [ðàññåÿíèÿ] Ãðàôè÷åñêîå ïðåäñòàâëåíèå ìíîæåñòâà òî÷åê, êîîðäèíàòû êîòîðûõ õ è ó â îáû÷íîé ïðÿìîóãîëüíîé ñèñòåìå êîîðäèíàò - ýòî çíà÷åíèÿ ïðèçíàêîâ Õ è Y. Ïðèìå÷àíèÿ 1. Ìíîæåñòâî èç n ýëåìåíòîâ òàêèì îáðàçîì äàåò n òî÷åê, êîòîðûå íàãëÿäíî ïîêàçûâàþò çàâèñèìîñòü ìåæäó Õ è Y. 2. Êîíöåïöèþ äèàãðàììû ðàçáðîñà ìîæíî ðàñïðîñòðàíèòü íà áîëåå ÷åì äâà ïðèçíàêà. |
en scatter diagram fr nuage de points |
|
2.22. òàáëèöà ñîïðÿæåííîñòè äâóõ ïðèçíàêîâ Òàáëèöà, èñïîëüçóåìàÿ äëÿ ïðåäñòàâëåíèÿ ðàñïðåäåëåíèÿ äâóõ ïðèçíàêîâ, â ñòðîêàõ è ñòîëáöàõ êîòîðîé óêàçûâàþò, ñîîòâåòñòâåííî, çíà÷åíèÿ èëè êëàññû ïåðâîãî è âòîðîãî ïðèçíàêîâ, ïðè ýòîì íà ïåðåñå÷åíèè ñòðîêè è ñòîëáöà ïîÿâëÿåòñÿ ÷àñòîòà, ñîîòâåòñòâóþùàÿ äàííîé êîìáèíàöèè çíà÷åíèé èëè êëàññîâ. Ïðèìå÷àíèå - Ýòî ïîíÿòèå ìîæíî ðàñïðîñòðàíèòü íà ÷èñëî ïðèçíàêîâ áîëåå äâóõ. |
en two-way table of frequencies; contingency table fr table d’effectifs a double entree, tableau de contingence |
|
2.23. ìíîãîìåðíîå ðàñïðåäåëåíèå ÷àñòîò Ýìïèðè÷åñêîå îòíîøåíèå ìåæäó ñîâìåñòíûìè íàáîðàìè çíà÷åíèé èëè êëàññîâ ïðèçíàêîâ ñ îäíîé ñòîðîíû è èõ ÷àñòîòàìè ñ äðóãîé - äëÿ íåñêîëüêèõ ïðèçíàêîâ, ðàññìàòðèâàåìûõ îäíîâðåìåííî. |
en multivariate frequency distribution fr distribution d’effectif a plusieurs variables |
|
2.24. ìàðãèíàëüíîå ðàñïðåäåëåíèå ÷àñòîò Ðàñïðåäåëåíèå ÷àñòîò ïîäìíîæåñòâà k1 < k ïðèçíàêîâ èç ìíîãîìåðíîãî ðàñïðåäåëåíèÿ ÷àñòîò k ïðèçíàêîâ, êîãäà îñòàëüíûå (k - k1) ïåðåìåííûõ ïðèíèìàþò ëþáûå çíà÷åíèÿ èç ñâîèõ îáëàñòåé çíà÷åíèé. Ïðèìå÷àíèÿ 1. Äëÿ k = 2 ïðèçíàêîâ ìàðãèíàëüíîå ðàñïðåäåëåíèå ÷àñòîò ìîæíî ïîëó÷èòü, äîáàâëÿÿ ê êàæäîìó çíà÷åíèþ èëè êëàññó çíà÷åíèé ðàññìàòðèâàåìîãî ïðèçíàêà ñîîòâåòñòâóþùèå ÷àñòîòû èëè îòíîñèòåëüíûå ÷àñòîòû îñòàëüíûõ ïðèçíàêîâ. 2.  ðàñïðåäåëåíèè ÷àñòîò òðåõ ïðèçíàêîâ X, Y è Z ñóùåñòâóþò: - òðè äâóìåðíûõ ìàðãèíàëüíûõ ðàñïðåäåëåíèÿ ÷àñòîò, òî åñòü ðàñïðåäåëåíèÿ ïàð (X, Y), (X, Z), (Y, Z); - òðè îäíîìåðíûõ ìàðãèíàëüíûõ ðàñïðåäåëåíèÿ ÷àñòîò, òî åñòü ðàñïðåäåëåíèÿ X, Y è Z. |
en marginal frequency distribution fr distribution d’effectif marginale |
|
2.25. óñëîâíîå ðàñïðåäåëåíèå ÷àñòîò Ðàñïðåäåëåíèå ÷àñòîò k1 < 1 ïðèçíàêîâ èç ìíîãîìåðíîãî ðàñïðåäåëåíèÿ ÷àñòîò, êîãäà îñòàëüíûå (k - k1) ïðèçíàêîâ ôèêñèðîâàíû. Ïðèìå÷àíèÿ 1. Äëÿ k = 2 ïðèçíàêîâ óñëîâíûå ðàñïðåäåëåíèÿ ÷àñòîò ñ÷èòûâàþò íåïîñðåäñòâåííî èç ñòðîê è ñòîëáöîâ òàáëèöû ñîïðÿæåííîñòè äâóõ ïðèçíàêîâ. Óñëîâíîå ðàñïðåäåëåíèå îòíîñèòåëüíûõ ÷àñòîò ïîëó÷àþò äåëåíèåì ÷èñåë â êàæäîé ñòðîêå (ñòîëáöå) íà îáùåå ÷èñëî â ñîîòâåòñòâóþùåé ñòðîêå (ñòîëáöå). 2.  ðàñïðåäåëåíèè ÷àñòîò äâóõ ïðèçíàêîâ Õ è Y: - óñëîâíîå ðàñïðåäåëåíèå ÷àñòîò X; êîíêðåòíûå ðàñïðåäåëåíèÿ âûðàæàþò êàê ðàñïðåäåëåíèå X ïðè Y = ó; - óñëîâíîå ðàñïðåäåëåíèå ÷àñòîò Y; êîíêðåòíûå ðàñïðåäåëåíèÿ âûðàæàþò êàê ðàñïðåäåëåíèå Y ïðè Õ = õ. |
en conditional frequency distribution fr distribution d’effectif conditionnelle |
|
Ñóììà çíà÷åíèé, äåëåííàÿ íà èõ ÷èñëî. Ïðèìå÷àíèÿ 1. Òåðìèí «ñðåäíåå» îáû÷íî èñïîëüçóþò, êîãäà èìåþò â âèäó ïàðàìåòð ñîâîêóïíîñòè, à òåðìèí «ñðåäíåå àðèôìåòè÷åñêîå» - êîãäà èìåþò â âèäó ðåçóëüòàò âû÷èñëåíèé ïî äàííûì, ïîëó÷åííûì èç âûáîðîê. 2. Ñðåäíåå àðèôìåòè÷åñêîå ïðîñòîé ñëó÷àéíîé âûáîðêè, âçÿòîé èç ñîâîêóïíîñòè, - ýòî íåñìåùåííàÿ îöåíêà àðèôìåòè÷åñêîãî ñðåäíåãî ãåíåðàëüíîé ñîâîêóïíîñòè. Îäíàêî äðóãèå ôîðìóëû äëÿ îöåíêè, òàêèå êàê ãåîìåòðè÷åñêîå èëè ãàðìîíè÷åñêîå ñðåäíåå, ìåäèàíà èëè ìîäà, èíîãäà òîæå èñïîëüçóþò. |
en arithmetic mean fr moyenne arithmetique; moyenne |
|
2.27. âçâåøåííîå ñðåäíåå àðèôìåòè÷åñêîå Ñóììà ïðîèçâåäåíèé êàæäîãî çíà÷åíèÿ íà åãî âåñ, äåëåííàÿ íà ñóììó âåñîâ, ãäå âåñà - íåîòðèöàòåëüíûå êîýôôèöèåíòû, ñâÿçàííûå ñ êàæäûì çíà÷åíèåì. |
en arithmetic weighted mean fr moyenne arithmetique ponderee; moyenne ponderee |
|
Åñëè n ñëó÷àéíûõ çíà÷åíèé óïîðÿäî÷åíû ïî âîçðàñòàíèþ è ïðîíóìåðîâàíû îò 1 äî n, òî, åñëè n íå÷åòíî, âûáîðî÷íàÿ ìåäèàíà ïðèíèìàåò çíà÷åíèå ñ íîìåðîì ; åñëè n ÷åòíî, ìåäèàíà ëåæèò ìåæäó -ì è -ì çíà÷åíèÿìè è íå ìîæåò áûòü îäíîçíà÷íî îïðåäåëåíà. Ïðèìå÷àíèå - Ïðè îòñóòñòâèè äðóãèõ óêàçàíèé è ÷åòíîì n çà âûáîðî÷íóþ ìåäèàíó ìîæíî ïðèíÿòü ñðåäíåå àðèôìåòè÷åñêîå ýòèõ äâóõ çíà÷åíèé. |
en sample median fr mediane |
|
2.29. ñåðåäèíà ðàçìàõà (âûáîðêè) Ñðåäíåå àðèôìåòè÷åñêîå ìåæäó íàèáîëüøèì è íàèìåíüøèì íàáëþäåííûìè çíà÷åíèÿìè êîëè÷åñòâåííîãî ïðèçíàêà. |
en mid-range fr milieu de l’etendue |
|
Ðàçíîñòü ìåæäó íàèáîëüøèì è íàèìåíüøèì íàáëþäåííûìè çíà÷åíèÿìè êîëè÷åñòâåííîãî ïðèçíàêà â âûáîðêå. |
en range fr etendue |
|
2.31. ñðåäíèé ðàçìàõ (âûáîðîê) Ñðåäíåå àðèôìåòè÷åñêîå ðàçìàõîâ ìíîæåñòâà âûáîðîê îäèíàêîâîãî îáúåìà. |
en average range; mean range fr etendue moyenne |
|
2.32. ñðåäíåå îòêëîíåíèå (âûáîðêè) Ñðåäíåå àðèôìåòè÷åñêîå îòêëîíåíèå îò íà÷àëà êîîðäèíàò, êîãäà âñå îòêëîíåíèÿ èìåþò ïîëîæèòåëüíûé çíàê. Ïðèìå÷àíèå - Îáû÷íî âûáðàííîå íà÷àëî îòñ÷åòà ïðåäñòàâëÿåò ñîáîé ñðåäíåå àðèôìåòè÷åñêîå, õîòÿ ñðåäíåå îòêëîíåíèå ìèíèìèçèðóåòñÿ, êîãäà çà íà÷àëî îòñ÷åòà ïðèíèìàþò ìåäèàíó. |
en mean deviation fr ecart moyen |
|
Îäíà èç ìåð ðàññåÿíèÿ, ïðåäñòàâëÿþùàÿ ñîáîé ñóììó êâàäðàòîâ îòêëîíåíèé íàáëþäåíèé îò èõ ñðåäíåãî àðèôìåòè÷åñêîãî, äåëåííàÿ íà ÷èñëî íàáëþäåíèé ìèíóñ åäèíèöà. Ïðèìå÷àíèÿ 1. Äëÿ ñåðèè èç n íàáëþäåíèé õ1, x2, ..., õn ñî ñðåäíèì àðèôìåòè÷åñêèì
âûáîðî÷íàÿ äèñïåðñèÿ
2. Âûáîðî÷íàÿ äèñïåðñèÿ - ýòî íåñìåùåííàÿ îöåíêà äèñïåðñèè ñîâîêóïíîñòè. 3. Âûáîðî÷íàÿ äèñïåðñèÿ - ýòî öåíòðàëüíûé ìîìåíò âòîðîãî ïîðÿäêà, êðàòíûé n/(n - 1) (ï. 2.39, ïðèìå÷àíèå). |
en sampling variance fr variance |
|
2.34. âûáîðî÷íîå ñòàíäàðòíîå îòêëîíåíèå Ïîëîæèòåëüíûé êâàäðàòíûé êîðåíü èç âûáîðî÷íîé äèñïåðñèè. Ïðèìå÷àíèå - Âûáîðî÷íîå ñòàíäàðòíîå îòêëîíåíèå - ýòî ñìåùåííàÿ îöåíêà ñòàíäàðòíîãî îòêëîíåíèÿ ñîâîêóïíîñòè. |
en sampling standard deviation fr ecart-type |
|
2.35. âûáîðî÷íûé êîýôôèöèåíò âàðèàöèè (Íäï. îòíîñèòåëüíîå ñòàíäàðòíîå îòêëîíåíèå) Îòíîøåíèå âûáîðî÷íîãî ñòàíäàðòíîãî îòêëîíåíèÿ ê ñðåäíåìó àðèôìåòè÷åñêîìó äëÿ íåîòðèöàòåëüíûõ ïðèçíàêîâ. Ïðèìå÷àíèå - Ýòî îòíîøåíèå ìîæíî âûðàçèòü â ïðîöåíòàõ. |
en sample coefficient of variation fr coefficient de variation |
|
2.36. âûáîðî÷íûé ìîìåíò ïîðÿäêà q îòíîñèòåëüíî íà÷àëà îòñ÷åòà Ñðåäíåå àðèôìåòè÷åñêîå íàáëþäàåìûõ çíà÷åíèé â ñòåïåíè q â ðàñïðåäåëåíèè åäèíñòâåííîãî ïðèçíàêà:
ãäå n - îáùåå ÷èñëî íàáëþäåíèé. Ïðèìå÷àíèå - Ìîìåíò ïåðâîãî ïîðÿäêà - ýòî ñðåäíåå àðèôìåòè÷åñêîå íàáëþäàåìûõ çíà÷åíèé. |
en sample moment of order q about the origin fr moment d’ordre q par rapport a l’origine |
|
2.37. âûáîðî÷íûé öåíòðàëüíûé ìîìåíò ïîðÿäêà q Ñðåäíåå àðèôìåòè÷åñêîå ðàçíîñòåé ìåæäó íàáëþäàåìûìè çíà÷åíèÿìè õi è èõ ñðåäíèì àðèôìåòè÷åñêèì â ñòåïåíè q â ðàñïðåäåëåíèè åäèíñòâåííîãî ïðèçíàêà:
ãäå n - ÷èñëî íàáëþäåíèé. Ïðèìå÷àíèå - Âûáîðî÷íûé öåíòðàëüíûé ìîìåíò ïåðâîãî ïîðÿäêà ðàâåí íóëþ. |
en sample central moment of order q fr moment centre d’ordre q |
|
2.38. âûáîðî÷íûé ñîâìåñòíûé ìîìåíò ïîðÿäêîâ q è s îòíîñèòåëüíî íà÷àëà îòñ÷åòà  ñîâìåñòíîì ðàñïðåäåëåíèè äâóõ ïîêàçàòåëåé - ñðåäíåå àðèôìåòè÷åñêîå ïðîèçâåäåíèé xi â ñòåïåíè q è yi â ñòåïåíè s äëÿ âñåõ íàáëþäàåìûõ ïàð çíà÷åíèé (xi, ói)
ãäå n - ÷èñëî íàáëþäàåìûõ ïàð. Ïðèìå÷àíèÿ 1. Âûáîðî÷íûé ñîâìåñòíûé ìîìåíò ïîðÿäêîâ q è s - ýòî îäèí èç ìîìåíòîâ ïîðÿäêà (q + s). 2. Âûáîðî÷íûé ìîìåíò ïîðÿäêîâ 1 è 0 - ýòî ñðåäíåå àðèôìåòè÷åñêîå ìàðãèíàëüíîãî ðàñïðåäåëåíèÿ ÷àñòîò X, à ìîìåíò ïîðÿäêîâ 0 è 1 - ñðåäíåå àðèôìåòè÷åñêîå ìàðãèíàëüíîãî ðàñïðåäåëåíèÿ ÷àñòîò Y. |
en sample joint moment of orders q and s about the origin fr moment d’ordres q et s par rapport a l’origine |
|
2.39. âûáîðî÷íûé ñîâìåñòíûé öåíòðàëüíûé ìîìåíò ïîðÿäêîâ q è s  ñîâìåñòíîì ðàñïðåäåëåíèè äâóõ ïðèçíàêîâ - ñðåäíåå àðèôìåòè÷åñêîå ïðîèçâåäåíèé ðàçíîñòè ìåæäó xi è åãî ñðåäíèì àðèôìåòè÷åñêèì çíà÷åíèåì â ñòåïåíè q è ðàçíîñòè ìåæäó ói è åãî ñðåäíèì àðèôìåòè÷åñêèì çíà÷åíèåì â ñòåïåíè s äëÿ âñåõ íàáëþäàåìûõ ïàð (xi, ói):
ãäå n - ÷èñëî íàáëþäàåìûõ ïàð. Ïðèìå÷àíèå - Âûáîðî÷íûé öåíòðàëüíûé ìîìåíò ïîðÿäêîâ 2 è 0 - ýòî âûáîðî÷íàÿ äèñïåðñèÿ ìàðãèíàëüíîãî ðàñïðåäåëåíèÿ ÷àñòîò X, óìíîæåííàÿ íà (n - 1)/n, à âûáîðî÷íûé öåíòðàëüíûé ìîìåíò ïîðÿäêîâ 0 è 2 - âûáîðî÷íàÿ äèñïåðñèÿ ìàðãèíàëüíîãî ðàñïðåäåëåíèÿ ÷àñòîò Y, óìíîæåííàÿ íà (n - 1)/n. |
en sample joint central moment of orders q and s fr moment centre d’ordres q et s |
|
Ñóììà ïðîèçâåäåíèé îòêëîíåíèé õ è ó îò èõ ñîîòâåòñòâóþùèõ ñðåäíèõ àðèôìåòè÷åñêèõ, äåëåííàÿ íà ÷èñëî íàáëþäàåìûõ ïàð áåç åäèíèöû:
ãäå n - ÷èñëî íàáëþäàåìûõ ïàð. Ïðèìå÷àíèå - Âûáîðî÷íàÿ êîâàðèàöèÿ - ýòî íåñìåùåííàÿ îöåíêà êîâàðèàöèè ñîâîêóïíîñòè. |
en sample covariance fr covariance |
|
2.41. âûáîðî÷íûé êîýôôèöèåíò êîððåëÿöèè ×àñòíîå îò äåëåíèÿ âûáîðî÷íîé êîâàðèàöèè äâóõ ïîêàçàòåëåé íà ïðîèçâåäåíèå èõ âûáîðî÷íûõ ñòàíäàðòíûõ îòêëîíåíèé:
ãäå Sxy - âûáîðî÷íàÿ êîâàðèàöèÿ Õ è Y; Sx è Sy - âûáîðî÷íûå ñòàíäàðòíûå îòêëîíåíèÿ Õ è Y ñîîòâåòñòâåííî. Ïðèìå÷àíèÿ 1. Ýòîò êîýôôèöèåíò ÷àñòî èñïîëüçóþò êàê öèôðîâîå âûðàæåíèå âçàèìíîé çàâèñèìîñòè ìåæäó Õ è Y â ñåðèè ïàðíûõ íàáëþäåíèé. Äëÿ ïðîâåðêè ëèíåéíîñòè ìîæíî ñòðîèòü äèàãðàììó ðàçáðîñà. 2. Åãî çíà÷åíèÿ âñåãäà ëåæàò ìåæäó ìèíóñ 1 è ïëþñ 1. Êîãäà âûáîðî÷íûé êîýôôèöèåíò êîððåëÿöèè ðàâåí îäíîìó èç óêàçàííûõ ïðåäåëîâ, ýòî îçíà÷àåò, ÷òî ñóùåñòâóåò òî÷íàÿ ëèíåéíàÿ çàâèñèìîñòü â ñåðèè ïàðíûõ íàáëþäåíèé. 3. Ýòîò âûáîðî÷íûé êîýôôèöèåíò êîððåëÿöèè ïðèìåíÿþò äëÿ èçìåðÿåìûõ ïðèçíàêîâ; äëÿ ðàíãîâûõ äàííûõ èñïîëüçóþò äðóãèå êîýôôèöèåíòû êîððåëÿöèè, òàêèå êàê êîýôôèöèåíòû Ñïèðìåíà è Êåíäàëëà. |
en sample correlation coefficient fr coefficient de correlation |
|
2.42. êðèâàÿ ðåãðåññèè (Y ïî Õ äëÿ âûáîðêè) Äëÿ âûáîðêè n ïàð íàáëþäåíèé äâóõ ïîêàçàòåëåé Õ è Y - êðèâàÿ ðåãðåññèè Y îò X îòîáðàæàåò çàâèñèìîñòü ôóíêöèè Y îò X. |
en regression curve fr courbe de regression |
|
2.43. ïîâåðõíîñòü ðåãðåññèè (Z ïî Õ è Y äëÿ âûáîðêè) Äëÿ âûáîðêè ï íàáëþäåíèé êàæäîãî èç òðåõ ïîêàçàòåëåé X, Y è Z - ïîâåðõíîñòü ðåãðåññèè Z îò Õ è Y îòîáðàæàåò çàâèñèìîñòü ôóíêöèè Z îò X è Y. Ïðèìå÷àíèå - Âûøåóêàçàííûå îïðåäåëåíèÿ ìîæíî ðàñïðîñòðàíèòü òàêæå íà ñëó÷àé áîëåå òðåõ ïîêàçàòåëåé. |
en regression surface fr surface de regression |
|
2.44. âûáîðî÷íûé êîýôôèöèåíò ðåãðåññèè Êîýôôèöèåíò ïðè ïåðåìåííîé â óðàâíåíèè êðèâîé èëè ïîâåðõíîñòè ðåãðåññèè. |
en sample regression coefficient fr coefficient de regression |
|
Ôóíêöèÿ îò âûáîðî÷íûõ çíà÷åíèé. Ïðèìå÷àíèå - Ñòàòèñòèêà êàê ôóíêöèÿ îò âûáîðî÷íûõ çíà÷åíèé - ñëó÷àéíàÿ âåëè÷èíà, êîòîðàÿ ìîæåò ïðèíèìàòü ðàçëè÷íûå çíà÷åíèÿ îò âûáîðêè ê âûáîðêå. Çíà÷åíèå ñòàòèñòèêè, ïîëó÷àåìîå ïðè èñïîëüçîâàíèè íàáëþäàåìûõ çíà÷åíèé, êàê èõ ôóíêöèÿ ìîæåò áûòü èñïîëüçîâàíî ïðè ïðîâåðêå ñòàòèñòè÷åñêèõ ãèïîòåç èëè êàê îöåíêà ïàðàìåòðà ñîâîêóïíîñòè, íàïðèìåð ñðåäíåãî àðèôìåòè÷åñêîãî èëè ñòàíäàðòíîãî îòêëîíåíèÿ. |
en statistics fr statistique |
|
Êàæäîå èç óïîðÿäî÷åííûõ âûáîðî÷íûõ çíà÷åíèé, ðàñïîëîæåííûõ â íåóáûâàþùåì ïîðÿäêå. Ïðèìå÷àíèÿ 1.  áîëåå îáùåì âûðàæåíèè âñÿêóþ ñòàòèñòèêó, îñíîâàííóþ íà ïîðÿäêîâûõ ñòàòèñòèêàõ â ýòîì óçêîì ñìûñëå, òàêæå íàçûâàþò ïîðÿäêîâîé ñòàòèñòèêîé. 2. k-e çíà÷åíèå â íåóáûâàþùåé ïîñëåäîâàòåëüíîñòè íàáëþäåíèé x|k| - ýòî çíà÷åíèå ñëó÷àéíîé âåëè÷èíû X|k|, íàçûâàåìîå k-é ïîðÿäêîâîé ñòàòèñòèêîé.  âûáîðêå îáúåìà n íàèìåíüøåå íàáëþäàåìîå çíà÷åíèå x|1| è íàèáîëüøåå çíà÷åíèå x|n| - ýòî çíà÷åíèÿ ñëó÷àéíûõ âåëè÷èí X|1| è X|n| - ïåðâàÿ è n-ÿ ïîðÿäêîâûå ñòàòèñòèêè ñîîòâåòñòâåííî. Ðàçìàõ x|n| - x|1| - ýòî çíà÷åíèå ïîðÿäêîâîé ñòàòèñòèêè X|n| - X|1|. |
en order statistics fr statistique d’ordre |
|
Òåíäåíöèÿ ê âîçðàñòàíèþ èëè óáûâàíèþ íàáëþäàåìûõ çíà÷åíèé, íàíåñåííûõ íà ãðàôèê â ïîðÿäêå èõ ïîëó÷åíèÿ ïîñëå èñêëþ÷åíèÿ ñëó÷àéíûõ îøèáîê è öèêëè÷åñêèõ ýôôåêòîâ. |
en trend fr tendance |
|
à) Ïîÿâëåíèå â ðÿäàõ íàáëþäåíèé ïî êà÷åñòâåííîìó ïðèçíàêó íåïðåðûâàþùèõñÿ ðÿäîâ îäíîãî è òîãî æå çíà÷åíèÿ ïðèçíàêà. b) Ïîñëåäîâàòåëüíûé íàáîð ìîíîòîííî âîçðàñòàþùèõ èëè ìîíîòîííî óáûâàþùèõ çíà÷åíèé â ðÿäàõ íàáëþäåíèé ïî êîëè÷åñòâåííîìó ïðèçíàêó. Ïðèìå÷àíèå - Ïîñëåäîâàòåëüíûé íàáîð ìîíîòîííî âîçðàñòàþùèõ çíà÷åíèé íàçûâàþò âîçðàñòàþùåé ñåðèåé, à ìîíîòîííî óáûâàþùèõ çíà÷åíèé - óáûâàþùåé ñåðèåé. |
en run fr suite |
|
Îïåðàöèÿ îïðåäåëåíèÿ íà îñíîâå âûáîðî÷íûõ äàííûõ ÷èñëîâûõ çíà÷åíèé ïàðàìåòðîâ ðàñïðåäåëåíèÿ, ïðèíÿòîãî â êà÷åñòâå ñòàòèñòè÷åñêîé ìîäåëè ãåíåðàëüíîé ñîâîêóïíîñòè, èç êîòîðîé èçâëå÷åíà âûáîðêà. Ïðèìå÷àíèå - Ðåçóëüòàò ýòîé îïåðàöèè ìîæåò áûòü âûðàæåí êàê îäíèì ÷èñëîâûì çíà÷åíèåì, òàê è äîâåðèòåëüíûì èíòåðâàëîì. |
en estimation fr estimation |
|
Ñòàòèñòèêà, èñïîëüçóåìàÿ äëÿ îöåíèâàíèÿ ïàðàìåòðà ñîâîêóïíîñòè. |
en estimator fr estimateur |
|
Çíà÷åíèå ïàðàìåòðà, ïîëó÷åííîå â ðåçóëüòàòå îöåíèâàíèÿ. |
en estimate fr estimation (resultat) |
|
Ðàçíîñòü (Ò - q) ïðè îöåíèâàíèè ïàðàìåòðà, ãäå T îáîçíà÷àåò ðåçóëüòàò îöåíêè, à q - îöåíèâàåìûé ïàðàìåòð. Ïðèìå÷àíèå - Ïîãðåøíîñòü ïðè îöåíèâàíèè ìîæåò âêëþ÷àòü â ñåáÿ îäèí èëè íåñêîëüêî èç ñëåäóþùèõ êîìïîíåíòîâ: - ïîãðåøíîñòü âûáîðî÷íîãî ìåòîäà; - ïîãðåøíîñòü èçìåðåíèÿ; - îêðóãëåíèå çíà÷åíèé èëè ðàçäåëåíèå íà êëàññû; - äðóãèå ïîãðåøíîñòè. |
en estimator error fr erreur d’estimation |
|
2.53. ïîãðåøíîñòü âûáîðî÷íîãî ìåòîäà ×àñòü ïîãðåøíîñòè ïðè îöåíèâàíèè, îáóñëîâëåííàÿ òîëüêî òåì, ÷òî îáúåì âûáîðêè ìåíüøå, ÷åì îáúåì ãåíåðàëüíîé ñîâîêóïíîñòè. |
en sampling error fr erreur d’echantillonnage |
|
Ðàçíîñòü ìåæäó ìàòåìàòè÷åñêèì îæèäàíèåì îöåíêè è çíà÷åíèåì îöåíèâàåìîãî ïàðàìåòðà. |
en bias of estimator fr biais d’un estimateur |
|
Îöåíêà ñî ñìåùåíèåì, ðàâíûì íóëþ. |
en unbiased estimator fr estimateur sans biais |
|
2.56. ñòàíäàðòíàÿ îøèáêà; ñðåäíåêâàäðàòè÷íàÿ îøèáêà Ñòàíäàðòíîå îòêëîíåíèå îöåíêè. |
en standard error fr erreur-type |
|
2.57. äâóñòîðîííèé äîâåðèòåëüíûé èíòåðâàë Åñëè T1 è T2 - äâå ôóíêöèè îò íàáëþäàåìûõ çíà÷åíèé òàêèõ, ÷òî äëÿ îöåíêè ïàðàìåòðà ðàñïðåäåëåíèÿ ñîâîêóïíîñòè q âåðîÿòíîñòü ðàâíà (1 - a), ãäå (1 - a) - êîíñòàíòà, ïîëîæèòåëüíàÿ è ìåíüøå 1, òî èíòåðâàë ìåæäó T1 è T2 - ýòî äâóñòîðîííèé äîâåðèòåëüíûé èíòåðâàë äëÿ q ïðè äîâåðèòåëüíîé âåðîÿòíîñòè (1 - a). Ïðèìå÷àíèÿ 1. Ãðàíèöû T1 è T2 äîâåðèòåëüíîãî èíòåðâàëà - ýòî ñòàòèñòèêè (2.45), êîòîðûå â îáùèõ ïðåäïîëîæåíèÿõ ïðèíèìàþò ðàçëè÷íûå çíà÷åíèÿ îò âûáîðêè ê âûáîðêå. 2.  äëèííîì ðÿäó âûáîðîê îòíîñèòåëüíàÿ ÷àñòîòà ñëó÷àåâ, êîãäà äîâåðèòåëüíûé èíòåðâàë íàêðûâàåò èñòèííîå çíà÷åíèå ïàðàìåòðà ñîâîêóïíîñòè q, áîëüøå èëè ðàâíà (1 - a). |
en two-sided confidence interval fr intervalle de confiance bilateral |
|
2.58. îäíîñòîðîííèé äîâåðèòåëüíûé èíòåðâàë Åñëè Ò - ôóíêöèÿ îò íàáëþäàåìûõ çíà÷åíèé òàêàÿ, ÷òî äëÿ îöåíêè ïàðàìåòðà ðàñïðåäåëåíèÿ ñîâîêóïíîñòè q âåðîÿòíîñòü èëè âåðîÿòíîñòü ðàâíà (1 - a), ãäå (1 - a) - êîíñòàíòà, ïîëîæèòåëüíàÿ è ìåíüøå 1, òî èíòåðâàë îò íàèìåíüøåãî âîçìîæíîãî çíà÷åíèÿ q äî Ò èëè èíòåðâàë îò T äî íàèáîëüøåãî âîçìîæíîãî çíà÷åíèÿ q - ýòî îäíîñòîðîííèé äîâåðèòåëüíûé èíòåðâàë äëÿ q ïðè äîâåðèòåëüíîé âåðîÿòíîñòè (1 - a). Ïðèìå÷àíèÿ 1. Ãðàíèöà T äîâåðèòåëüíîãî èíòåðâàëà - ýòî ñòàòèñòèêà, êîòîðàÿ â îáùèõ ïðåäïîëîæåíèÿõ ïðèíèìàåò ðàçëè÷íûå çíà÷åíèÿ îò âûáîðêè ê âûáîðêå. 2. Ñì. ï. 2.57, ïðèìå÷àíèå 2. |
en one-sided confidence interval fr intervalle de confiance unilateral |
|
2.59. äîâåðèòåëüíàÿ âåðîÿòíîñòü; óðîâåíü äîâåðèÿ Âåëè÷èíà (1 - a) - âåðîÿòíîñòü, ñâÿçàííàÿ ñ äîâåðèòåëüíûì èíòåðâàëîì èëè ñî ñòàòèñòè÷åñêè íàêðûâàþùèì èíòåðâàëîì. Ïðèìå÷àíèå - Âåëè÷èíó (1 - a) ÷àñòî âûðàæàþò â ïðîöåíòàõ. |
en confidence coefficient; confidence level fr niveau de confiance |
|
Êàæäàÿ èç ãðàíèö, íèæíÿÿ T1, âåðõíÿÿ T2 äëÿ äâóñòîðîííåãî äîâåðèòåëüíîãî èíòåðâàëà èëè ãðàíèöà Ò äëÿ îäíîñòîðîííåãî èíòåðâàëà. |
en confidence limit fr limite de confiance |
|
Èíòåðâàë, äëÿ êîòîðîãî ìîæíî óòâåðæäàòü ñ äàííûì óðîâíåì äîâåðèÿ, ÷òî îí ñîäåðæèò, ïî êðàéíåé ìåðå, çàäàííóþ äîëþ îïðåäåëåííîé ñîâîêóïíîñòè. Ïðèìå÷àíèå - Åñëè îïðåäåëåíû îáå ãðàíèöû ïî ñòàòèñòè÷åñêèì äàííûì, òî èíòåðâàë äâóñòîðîííèé. Åñëè îäíà èç äâóõ ãðàíèö ïðåäñòàâëÿåò ñîáîé áåñêîíå÷íîñòü èëè îãðàíè÷åíèå îáëàñòè îïðåäåëåíèÿ ñëó÷àéíîé âåëè÷èíû, òî èíòåðâàë îäíîñòîðîííèé. |
en statistical coverage interval fr intervalle statistique de dispersion |
|
Äëÿ äâóñòîðîííåãî ñòàòèñòè÷åñêè íàêðûâàþùåãî èíòåðâàëà - íèæíÿÿ è âåðõíÿÿ ãðàíèöû ýòîãî èíòåðâàëà; äëÿ îäíîñòîðîííåãî ñòàòèñòè÷åñêè íàêðûâàþùåãî èíòåðâàëà - çíà÷åíèå ñòàòèñòèêè, îãðàíè÷èâàþùåé ýòîò èíòåðâàë. |
en statistical coverage limits fr limites statistiques de dispersion |
|
2.63. êðèòåðèé ñîãëàñèÿ ðàñïðåäåëåíèÿ Ìåðà ñîîòâåòñòâèÿ ìåæäó íàáëþäàåìûì ðàñïðåäåëåíèåì è òåîðåòè÷åñêèì ðàñïðåäåëåíèåì, âûáðàííûì àïðèîðè ëèáî ïîäîáðàííûì ïî ðåçóëüòàòàì íàáëþäåíèé. |
en goodness of fit of a distribution fr adequation d’une distribution; validite de l’ajustement |
|
Íàáëþäåíèÿ â âûáîðêå, îòëè÷àþùèåñÿ îò îñòàëüíûõ ïî âåëè÷èíå íàñòîëüêî, ÷òî âîçíèêàåò ïðåäïîëîæåíèå, ÷òî îíè ïðèíàäëåæàò äðóãîé ñîâîêóïíîñòè èëè ïîëó÷åíû â ðåçóëüòàòå îøèáêè èçìåðåíèÿ. |
en outliers fr valeurs aberrantes |
|
Ñòàòèñòè÷åñêèé ìåòîä ïðèíÿòèÿ ðåøåíèé î òîì, ñòîèò ëè îòâåðãíóòü íóëåâóþ ãèïîòåçó â ïîëüçó àëüòåðíàòèâíîé èëè íåò. Ïðèìå÷àíèÿ 1. Ðåøåíèå î íóëåâîé ãèïîòåçå ïðèíèìàþò èñõîäÿ èç çíà÷åíèé ñîîòâåòñòâóþùèõ ñòàòèñòèê, ëåæàùèõ â îñíîâå ñòàòèñòè÷åñêèõ êðèòåðèåâ èëè ðàññ÷èòàííûõ ïî ðåçóëüòàòàì íàáëþäåíèé. Òàê êàê ñòàòèñòèêè - ñëó÷àéíûå âåëè÷èíû, ñóùåñòâóåò íåêîòîðûé ðèñê ïðèíÿòèÿ îøèáî÷íîãî ðåøåíèÿ (ï. 2.75 è ï. 2.77). 2. Êðèòåðèé àïðèîðè ïðåäïîëàãàåò, ÷òî ïðîâåðÿþò íåêîòîðûå ïðåäïîëîæåíèÿ, íàïðèìåð ïðåäïîëîæåíèå î íåçàâèñèìîñòè íàáëþäåíèé, ïðåäïîëîæåíèå î íîðìàëüíîñòè è ò.ä. |
en statistical test fr test statistique |
|
2.66. íóëåâàÿ ãèïîòåçà è àëüòåðíàòèâíàÿ ãèïîòåçà Óòâåðæäåíèÿ îòíîñèòåëüíî îäíîãî èëè íåñêîëüêèõ ïàðàìåòðîâ èëè î ðàñïðåäåëåíèè, êîòîðûå ïðîâåðÿþò ñ ïîìîùüþ ñòàòèñòè÷åñêîãî êðèòåðèÿ. Ïðèìå÷àíèÿ 1. Íóëåâàÿ ãèïîòåçà (Í0) - ïðåäïîëîæåíèå, îáû÷íî ñëîæíîå, îòíîñÿò ê óòâåðæäåíèþ, ïîäâåðãàåìîìó ïðîâåðêå, â òî âðåìÿ êàê àëüòåðíàòèâíóþ ãèïîòåçó (Í1) îòíîñÿò ê óòâåðæäåíèþ, êîòîðîå áóäåò ïðèíÿòî, åñëè íóëåâóþ ãèïîòåçó îòâåðãàþò. 2. Ïðîâåðêà ãèïîòåçû î òîì, ÷òî ìàòåìàòè÷åñêîå îæèäàíèå m ñëó÷àéíîé âåëè÷èíû Õ â ñîâîêóïíîñòè íå ìåíüøå, ÷åì çàäàííîå çíà÷åíèå m0:
3. Ïðîâåðêà ãèïîòåçû î òîì, ÷òî äîëè íåñîîòâåòñòâóþùèõ äåòàëåé â äâóõ ïàðòèÿõ ð1 è p2 îäèíàêîâû (íåîäèíàêîâû):
4. Ïðîâåðêà ãèïîòåçû î òîì, ÷òî ñëó÷àéíàÿ âåëè÷èíà X èìååò íîðìàëüíîå ðàñïðåäåëåíèå ñ íåèçâåñòíûìè ïàðàìåòðàìè. Àëüòåðíàòèâíàÿ ãèïîòåçà - ðàñïðåäåëåíèå íå íîðìàëüíî. |
en null hypothesis and alternative hypothesis fr hypothese nulle et hypothese alternative |
|
Ãèïîòåçà, êîòîðàÿ ïîëíîñòüþ çàäàåò ðàñïðåäåëåíèå ñîâîêóïíîñòè. |
en simple hypothesis fr hypothese simple |
|
Ãèïîòåçà, êîòîðàÿ íå ïîëíîñòüþ çàäàåò ðàñïðåäåëåíèå ñîâîêóïíîñòè. Ïðèìå÷àíèÿ 1. Ýòî îáû÷íî ãèïîòåçà, êîòîðàÿ âêëþ÷àåò â ñåáÿ áåñêîíå÷íóþ ñèñòåìó ïðîñòûõ ãèïîòåç. 2.  ïðåäïîëîæåíèè íîðìàëüíîãî ðàñïðåäåëåíèÿ ãèïîòåçà m = m0 áóäåò ïðîñòîé, åñëè ñòàíäàðòíîå îòêëîíåíèå ñîâîêóïíîñòè èçâåñòíî, íî îíà áóäåò ñëîæíîé, åñëè îíî íåèçâåñòíî. 3. Âñå ãèïîòåçû èç ïðèìå÷àíèé, ïðèâåäåííûõ â ï. 2.66, ñëîæíûå. |
en composite hypothesis fr hypothese composite |
|
2.69. ñâîáîäíûé îò ðàñïðåäåëåíèÿ êðèòåðèé Êðèòåðèé, â êîòîðîì ôóíêöèÿ ðàñïðåäåëåíèÿ ñòàòèñòèêè, ëåæàùåé â îñíîâå êðèòåðèÿ, íå çàâèñèò îò ôóíêöèè ðàñïðåäåëåíèÿ íàáëþäåíèé |
en distribution-free test fr test non parametrique |
|
2.70. óðîâåíü çíà÷èìîñòè (êðèòåðèÿ) Çàäàííîå çíà÷åíèå âåðõíåãî ïðåäåëà âåðîÿòíîñòè îøèáêè ïåðâîãî ðîäà. Ïðèìå÷àíèå- Óðîâåíü çíà÷èìîñòè îáû÷íî îáîçíà÷àþò à. |
en significance level fr niveau de signification |
|
Ìíîæåñòâî âîçìîæíûõ çíà÷åíèé ñòàòèñòèêè, ëåæàùåé â îñíîâå êðèòåðèÿ, äëÿ êîòîðîãî îòâåðãàþò íóëåâóþ ãèïîòåçó. Ïðèìå÷àíèÿ 1. Êðèòè÷åñêèå îáëàñòè îïðåäåëÿþò òàêèì îáðàçîì, ÷òî åñëè íóëåâàÿ ãèïîòåçà âåðíà, âåðîÿòíîñòü åå îòáðàñûâàíèÿ ðàâíà çàäàííîìó çíà÷åíèþ a, îáû÷íî ìàëîìó, íàïðèìåð 5 % èëè 1 %. 2. Êëàññè÷åñêèé ñïîñîá ïðîâåðêè íóëåâîé ãèïîòåçû, îòíîñÿùèéñÿ ê ìàòåìàòè÷åñêîìó îæèäàíèþ íîðìàëüíîãî ðàñïðåäåëåíèÿ ñ èçâåñòíûì ñòàíäàðòíûì îòêëîíåíèåì s, H0 (m ³ m0) ïðîòèâ àëüòåðíàòèâû H1 (m < m0), - èñïîëüçîâàíèå ñòàòèñòèêè âûáîðî÷íîãî ñðåäíåãî àðèôìåòè÷åñêîãî. Êðèòè÷åñêàÿ îáëàñòü - ýòî ìíîæåñòâî çíà÷åíèé ñòàòèñòèêè, ìåíüøèõ ÷åì
ãäå n - îáúåì âûáîðêè; m1-a - ýòî êâàíòèëü óðîâíÿ (1 - a) ñòàíäàðòèçîâàííîé íîðìàëüíîé ñëó÷àéíîé âåëè÷èíû. Åñëè ðàññ÷èòàííîå çíà÷åíèå ìåíüøå À, ãèïîòåçó Í0 îòâåðãàþò.  ïðîòèâíîì ñëó÷àå - Í0 íå îòâåðãàþò (ïðèíèìàþò). |
en critical region fr region critique |
|
Çíà÷åíèå, îãðàíè÷èâàþùåå êðèòè÷åñêóþ îáëàñòü. |
en critical value fr valeur critique |
|
Êðèòåðèé, â êîòîðîì èñïîëüçóåìàÿ ñòàòèñòèêà îäíîìåðíà, à êðèòè÷åñêàÿ îáëàñòü âêëþ÷àåò â ñåáÿ ìíîæåñòâî çíà÷åíèé, ìåíüøèõ êðèòè÷åñêîãî çíà÷åíèÿ, èëè ìíîæåñòâî çíà÷åíèé, áîëüøèõ êðèòè÷åñêîãî çíà÷åíèÿ. |
en one-sided test fr test unilateral |
|
Êðèòåðèé, â êîòîðîì èñïîëüçóåìàÿ ñòàòèñòèêà îäíîìåðíà, à êðèòè÷åñêàÿ îáëàñòü ñîñòîèò èç ìíîæåñòâà çíà÷åíèé, ìåíüøèõ ïåðâîãî êðèòè÷åñêîãî çíà÷åíèÿ, è ìíîæåñòâà çíà÷åíèé, áîëüøèõ âòîðîãî êðèòè÷åñêîãî çíà÷åíèÿ. Ïðèìå÷àíèå - Âûáîð ìåæäó îäíîñòîðîííèì è äâóñòîðîííèì êðèòåðèÿìè îïðåäåëÿåòñÿ àëüòåðíàòèâíîé ãèïîòåçîé.  ïðèìå÷àíèè, ïðèâåäåííîì â ï. 2.71, êðèòåðèé îäíîñòîðîííèé, à êðèòè÷åñêîå çíà÷åíèå ðàâíî À. |
en two-sided test fr test bilateral |
|
Îøèáêà, ñîñòîÿùàÿ â îòáðàñûâàíèè íóëåâîé ãèïîòåçû, ïîñêîëüêó ñòàòèñòèêà ïðèíèìàåò çíà÷åíèå, ïðèíàäëåæàùåå êðèòè÷åñêîé îáëàñòè, â òî âðåìÿ êàê ýòà íóëåâàÿ ãèïîòåçà âåðíà. |
en error of the first kind fr erreur de premiere espece |
|
2.76. âåðîÿòíîñòü îøèáêè ïåðâîãî ðîäà Âåðîÿòíîñòü äîïóñòèòü îøèáêó ïåðâîãî ðîäà. Ïðèìå÷àíèÿ 1. Îíà âñåãäà ìåíüøå óðîâíÿ çíà÷èìîñòè êðèòåðèÿ èëè ðàâíà åìó. 2.  ïðèìå÷àíèè 2 ê ï. 2.71 îøèáêà ïåðâîãî ðîäà ñîñòîèò â îòáðàñûâàíèè H0 (m < m0), ïîòîìó ÷òî ìåíüøå À, â òî âðåìÿ êàê íà ñàìîì äåëå m ðàâíî èëè ïðåâûøàåò m0. Âåðîÿòíîñòü òàêîé îøèáêè ðàâíà a ïðè m = m0 è óìåíüøàåòñÿ ñ óâåëè÷åíèåì m. |
en type I error probability fr probabilite d’erreur de premiere espece |
|
Îøèáêà ïðèíÿòü íóëåâóþ ãèïîòåçó, ïîñêîëüêó ñòàòèñòèêà ïðèíèìàåò çíà÷åíèå, íå ïðèíàäëåæàùåå êðèòè÷åñêîé îáëàñòè, â òî âðåìÿ êàê íóëåâàÿ ãèïîòåçà íå âåðíà. |
en error of the second kind fr erreur de seconde espece |
|
2.78. âåðîÿòíîñòü îøèáêè âòîðîãî ðîäà Âåðîÿòíîñòü äîïóñòèòü îøèáêó âòîðîãî ðîäà. Ïðèìå÷àíèå - Âåðîÿòíîñòü îøèáêè âòîðîãî ðîäà, îáû÷íî îáîçíà÷àåìàÿ b, çàâèñèò îò ðåàëüíîé ñèòóàöèè è ìîæåò áûòü âû÷èñëåíà ëèøü â òîì ñëó÷àå, åñëè àëüòåðíàòèâíàÿ ãèïîòåçà çàäàíà àäåêâàòíî. |
en type II error probability fr probabilite d’erreur de seconde espece |
|
Âåðîÿòíîñòü íåäîïóùåíèÿ îøèáêè âòîðîãî ðîäà. Ïðèìå÷àíèÿ 1. Ýòî âåðîÿòíîñòü îòáðàñûâàíèÿ íóëåâîé ãèïîòåçû, êîãäà îíà íå âåðíà. Åå îáû÷íî îáîçíà÷àþò (1 - b). 2.  ïðèìå÷àíèè 2 ê ï. 2.71 îøèáêà âòîðîãî ðîäà ñîñòîèò â ïðèíÿòèè ãèïîòåçû H0 (m ³ m0), ïîñêîëüêó ïðåâûøàåò À, â òî âðåìÿ êàê íà ñàìîì äåëå m ìåíüøå m0. Âåðîÿòíîñòü b òàêîé îøèáêè çàâèñèò îò ôàêòè÷åñêîãî çíà÷åíèÿ m: ÷åì áëèæå m ê m0, òåì áëèæå ìîùíîñòü ê 1. 3.  ïðèìå÷àíèè 4 ê ï. 2.66 ïðîâåðêà íóëåâîé ãèïîòåçû H0 (íîðìàëüíî ðàñïðåäåëåííàÿ ñîâîêóïíîñòü) ïðîòèâ àëüòåðíàòèâû H1 (ñîâîêóïíîñòü ñ íåíîðìàëüíûì ðàñïðåäåëåíèåì) íåâîçìîæíî âûðàçèòü b êàê ôóíêöèþ îò àëüòåðíàòèâíîé ãèïîòåçû, ïîñêîëüêó îíà íå îïðåäåëåíà. |
en power of a test fr puissance d’un test |
|
2.80. ôóíêöèÿ ìîùíîñòè êðèòåðèÿ Ôóíêöèÿ, êîòîðàÿ îïðåäåëÿåò ìîùíîñòü êðèòåðèÿ, îáû÷íî îáîçíà÷àåìóþ (1 - b) èëè (1 - Pa), ïðè ïðîâåðêå ãèïîòåçû îòíîñèòåëüíî çíà÷åíèé ñêàëÿðíîãî ïàðàìåòðà. Ïðèìå÷àíèå - Ýòà ôóíêöèÿ, îïðåäåëÿåìàÿ äëÿ çíà÷åíèé òåõ ïàðàìåòðîâ, êîòîðûå îòíîñÿòñÿ ê ñîîòâåòñòâóþùèì àëüòåðíàòèâíûì ãèïîòåçàì, ïðåäñòàâëÿåò ñîáîé âåðîÿòíîñòü îòêëîíåíèÿ íóëåâîé ãèïîòåçû, êîãäà îíà íå âåðíà. |
en power function of a test fr fonction de puissance d’un test |
|
2.81. êðèâàÿ ìîùíîñòè (êðèòåðèÿ) Ãðàôè÷åñêîå ïðåäñòàâëåíèå ôóíêöèè ìîùíîñòè êðèòåðèÿ. Ïðèìå÷àíèÿ 1. Íà ðèñóíêå 1 ïðåäñòàâëåíà êðèâàÿ ìîùíîñòè äëÿ ïðîâåðêè ãèïîòåçû H0 (m ³ m0) ïðîòèâ àëüòåðíàòèâíîé ãèïîòåçû H1 (m < m0) â çàâèñèìîñòè îò ìàòåìàòè÷åñêîãî îæèäàíèÿ ñîâîêóïíîñòè m è óðîâíÿ çíà÷èìîñòè êðèòåðèÿ a. Ðèñóíîê 1 - Êðèâàÿ ìîùíîñòè 1 - Pa - âåðîÿòíîñòü îòêëîíåíèÿ ãèïîòåçû H0; m - ìàòåìàòè÷åñêîå îæèäàíèå ñîâîêóïíîñòè 2. Íà ðèñóíêå 2 ïðåäñòàâëåíà êðèâàÿ ìîùíîñòè êðèòåðèÿ äëÿ ãèïîòåçû H0 (p £ p0) ïðîòèâ H1 (p > p0) â çàâèñèìîñòè îò ð0 - äîëè íåñîîòâåòñòâóþùèõ åäèíèö â ïàðòèè, ïðîõîäÿùåé êîíòðîëü. Ðèñóíîê 2 - Êðèâàÿ ìîùíîñòè 1 - Pa - âåðîÿòíîñòü îòêëîíåíèÿ ãèïîòåçû H0; p - äîëÿ íåñîîòâåòñòâóþùèõ åäèíèö â ïàðòèè. |
en power curve fr courbe de puissance |
|
2.82. îïåðàòèâíàÿ õàðàêòåðèñòèêà Ôóíêöèÿ, êîòîðàÿ îïðåäåëÿåò âåðîÿòíîñòü ïðèíÿòèÿ íóëåâîé ãèïîòåçû îòíîñèòåëüíî çíà÷åíèé ñêàëÿðíîãî ïàðàìåòðà, îáû÷íî îáîçíà÷àåìàÿ Ðà. Ïðèìå÷àíèå - Îïåðàòèâíàÿ õàðàêòåðèñòèêà âñåãäà ðàâíà åäèíèöå ìèíóñ çíà÷åíèå êðèòåðèÿ ìîùíîñòè. |
en operating characteristic fr efflcacite |
|
2.83. êðèâàÿ îïåðàòèâíîé õàðàêòåðèñòèêè; êðèâàÿ ÎÕ Ãðàôè÷åñêîå ïðåäñòàâëåíèå îïåðàòèâíîé õàðàêòåðèñòèêè. Ïðèìå÷àíèÿ 1. Íà ðèñóíêå 3 ïðåäñòàâëåíà êðèâàÿ îïåðàòèâíîé õàðàêòåðèñòèêè äëÿ ïðîâåðêè ãèïîòåçû H0 (m ³ m0) ïðîòèâ H1 (m < m0) â çàâèñèìîñòè îò ìàòåìàòè÷åñêîãî îæèäàíèÿ ãåíåðàëüíîé ñîâîêóïíîñòè m è óðîâíÿ çíà÷èìîñòè êðèòåðèÿ a. Ðèñóíîê 3 - Êðèâàÿ îïåðàòèâíîé õàðàêòåðèñòèêè Pa - âåðîÿòíîñòü ïðèíÿòèÿ ãèïîòåçû H0; m - ìàòåìàòè÷åñêîå îæèäàíèå ñîâîêóïíîñòè 2. Íà ðèñóíêå 4 ïðåäñòàâëåíà êðèâàÿ îïåðàòèâíîé õàðàêòåðèñòèêè äëÿ ïðîâåðêè ãèïîòåçû H0 (p < p0) ïðîòèâ H1 (p ³ p0) â çàâèñèìîñòè îò ð - äîëè íåñîîòâåòñòâóþùèõ åäèíèö â ïàðòèè, ïðîõîäÿùåé êîíòðîëü. Ðèñóíîê 4 - Êðèâàÿ îïåðàòèâíîé õàðàêòåðèñòèêè Pa - âåðîÿòíîñòü ïðèíÿòèÿ ãèïîòåçû H0; p - äîëÿ íåñîîòâåòñòâóþùèõ åäèíèö â ïàðòèè. |
en operating characteristic curve fr courbe d’efficacite |
|
2.84. çíà÷èìûé ðåçóëüòàò (íà âûáðàííîì óðîâíå çíà÷èìîñòè a) Ðåçóëüòàò ñòàòèñòè÷åñêîé ïðîâåðêè, êîòîðûé ïðèâîäèò ê îòáðàñûâàíèþ íóëåâîé ãèïîòåçû, â ïðîòèâíîì ñëó÷àå - ðåçóëüòàò íåçíà÷èì. Ïðèìå÷àíèÿ 1. Êîãäà ðåçóëüòàò ïðîâåðêè íàçûâàþò ñòàòèñòè÷åñêè çíà÷èìûì, ýòî ïîêàçûâàåò, ÷òî ðåçóëüòàò âûõîäèò çà òîò äèàïàçîí çíà÷åíèé, â êîòîðûé óêëàäûâàþòñÿ ñëó÷àéíûå âîçäåéñòâèÿ, êîãäà íóëåâàÿ ãèïîòåçà âåðíà. 2. Äëÿ ïðèìåðà, ïðèâåäåííîãî â ï. 2.71, ïðè , ìåíüøåì À, ãäå ñ÷èòàþò, ÷òî çíà÷èìî ìåíüøå m0 íà óðîâíå çíà÷èìîñòè 1 - a. |
en significant result (at the closen significance level a) fr resultat significatif (an niveau de signification a choisi) |
|
 îáùåì ñëó÷àå ÷èñëî ñëàãàåìûõ ìèíóñ ÷èñëî îãðàíè÷åíèé, íàëàãàåìûõ íà íèõ. |
en degree of freedom fr degre de liberte |
|
2.86. c2-êðèòåðèé Êðèòåðèé, â êîòîðîì â íóëåâîé ãèïîòåçå èñïîëüçóåìàÿ ñòàòèñòèêà èìååò ïî ïðåäïîëîæåíèþ ðàñïðåäåëåíèå c2. Ïðèìå÷àíèå - Åãî ïðèìåíÿþò, íàïðèìåð, ïðè ðåøåíèè ñëåäóþùèõ çàäà÷: - ïðîâåðêà ðàâåíñòâà äèñïåðñèè íîðìàëüíîé ñîâîêóïíîñòè è çàäàííîãî çíà÷åíèÿ äèñïåðñèè, îöåíèâàåìîé íà îñíîâå ñòàòèñòèêè êðèòåðèÿ ïî âûáîðêå, âçÿòîé èç ýòîé ñîâîêóïíîñòè; - ñðàâíåíèå íàáëþäàåìûõ ÷àñòîò ñ òåîðåòè÷åñêèìè ÷àñòîòàìè. |
en c2-test; chi-squared test fr test de chi carre; test c2 |
|
2.87. t-êðèòåðèé; êðèòåðèé Ñòüþäåíòà Ñòàòèñòè÷åñêèé êðèòåðèé, â êîòîðîì â íóëåâîé ãèïîòåçå èñïîëüçóåìàÿ ñòàòèñòèêà ñîîòâåòñòâóåò t-ðàñïðåäåëåíèþ. Ïðèìå÷àíèå - Ýòîò êðèòåðèé ïðèìåíÿþò, íàïðèìåð, ïðè ðåøåíèè ñëåäóþùèõ çàäà÷: - ïðîâåðêà ðàâåíñòâà ìàòåìàòè÷åñêîãî îæèäàíèÿ íîðìàëüíîé ñîâîêóïíîñòè çàäàííîìó çíà÷åíèþ ñ ïîìîùüþ êðèòåðèÿ, îñíîâàííîãî íà âûáîðî÷íîì ñðåäíåì è âûáîðî÷íîé äèñïåðñèè; - ïðîâåðêà ðàâåíñòâà ìàòåìàòè÷åñêèõ îæèäàíèé èç äâóõ íîðìàëüíûõ ñîâîêóïíîñòåé ñ îäèíàêîâîé äèñïåðñèåé íà îñíîâå äâóõ âûáîðî÷íûõ ñðåäíèõ è äâóõ âûáîðî÷íûõ äèñïåðñèé èç äâóõ íåçàâèñèìûõ âûáîðîê, âçÿòûõ èç ýòèõ ñîâîêóïíîñòåé; - êðèòåðèé, ïðèìåíÿåìûé ê çíà÷åíèþ ëèíåéíîé ðåãðåññèè èëè êîýôôèöèåíòà êîððåëÿöèè. |
en t-test; Students test fr test t; test de Student |
|
2.88. F-êðèòåðèé, êðèòåðèé Ôèøåðà Ñòàòèñòè÷åñêèé êðèòåðèé, â êîòîðîì â íóëåâîé ãèïîòåçå èñïîëüçóåìàÿ ñòàòèñòèêà èìååò ïî ïðåäïîëîæåíèþ F-ðàñïðåäåëåíèå. Ïðèìå÷àíèå - Ýòîò êðèòåðèé ïðèìåíÿþò, íàïðèìåð, ïðè ðåøåíèè ñëåäóþùèõ çàäà÷: - ïðîâåðêà ðàâåíñòâà äèñïåðñèé äâóõ íîðìàëüíûõ ñîâîêóïíîñòåé íà îñíîâå âûáîðî÷íûõ äèñïåðñèé, îöåíèâàåìûõ ïî äâóì íåçàâèñèìûì âûáîðêàì; - ïðîâåðêà ìàòåìàòè÷åñêèõ îæèäàíèé ðàâåíñòâà íåñêîëüêèõ (íàïðèìåð, Ê) íîðìàëüíûõ ñîâîêóïíîñòåé ñ îäèíàêîâûìè äèñïåðñèÿìè íà îñíîâå ñðåäíèõ àðèôìåòè÷åñêèõ è âûáîðî÷íûõ äèñïåðñèé íåçàâèñèìûõ âûáîðîê. |
en F-test fr test F |
|
Òåðìèí, îáîçíà÷àþùèé âûïîëíåíèå ñòàòèñòè÷åñêîãî èññëåäîâàíèÿ íåñêîëüêî ðàç îäíèì è òåì æå ìåòîäîì íà îäíîé è òîé æå ñîâîêóïíîñòè ïðè îäèíàêîâûõ óñëîâèÿõ. |
en repetition fr repetition |
|
2.90. ðåïëèêà; ïîâòîðíîå ïðîâåäåíèå ýêñïåðèìåíòà Îïðåäåëåíèå çíà÷åíèé áîëåå ÷åì îäèí ðàç â õîäå ýêñïåðèìåíòà èëè èññëåäîâàíèÿ. Ïðèìå÷àíèå - Ðåïëèêè îòëè÷àþòñÿ îò ïîâòîðåíèé òåì, ÷òî ïðåäïîëàãàþò ïîâòîðíûå ïðîâåðêè â ðàçíûõ ìåñòàõ è (èëè) â ðàçíîå âðåìÿ â ñîîòâåòñòâèè ñ ïëàíîì (ïî 1.10, ÈÑÎ 3534.3). |
en replication fr replique |
|
Ïðîöåññ, ñ ïîìîùüþ êîòîðîãî ìíîæåñòâî îáúåêòîâ óñòàíàâëèâàþò â ñëó÷àéíîì ïîðÿäêå. Ïðèìå÷àíèå - Åñëè èç ñîâîêóïíîñòè, ñîñòîÿùåé èç íàòóðàëüíûõ ÷èñåë îò 1 äî n, èçâëåêàòü ÷èñëà ñëó÷àéíî (òî åñòü òàêèì îáðàçîì, ÷òîáû âñå ÷èñëà èìåëè îäèíàêîâûå øàíñû áûòü âûáðàííûìè) îäíî çà äðóãèì áåç âîçâðàùåíèÿ, ïîêà ñîâîêóïíîñòü íå èñ÷åðïàåòñÿ, òî ïîðÿäîê îòáîðà ÷èñåë íàçûâàþò ñëó÷àéíûì. Åñëè ýòè n ÷èñåë àññîöèèðîâàòü ñ n ðàçëè÷íûìè îáúåêòàìè èëè ñ n ðàçíûìè îáðàáîòêàìè (ïî 1.4, ÈÑÎ 3534.3), êîòîðûå, òàêèì îáðàçîì, ïåðåóïîðÿäî÷èâàþòñÿ â òîì ïîðÿäêå, â êîòîðîì áûëè âûòÿíóòû ÷èñëà, ïîðÿäîê îáúåêòîâ èëè îáðàáîòîê íàçûâàþò ñëó÷àéíûì (ïî 1.12, ÈÑÎ 3534.3). |
en randomization fr randomisation |
|
Ôàêòîðû, êàæäûé èç êîòîðûõ èãðàåò îòíîñèòåëüíî ìàëóþ ðîëü, íî ñîçäàþò âàðèàöèþ, êîòîðóþ íåëüçÿ èäåíòèôèöèðîâàòü (ïî ÃÎÑÒ Ð 50779.11). |
en chance causes fr causes aleatoires |
|
3. ÎÁÙÈÅ ÒÅÐÌÈÍÛ, ÎÒÍÎÑßÙÈÅÑß Ê ÍÀÁËÞÄÅÍÈßÌ È Ê ÐÅÇÓËÜÒÀÒÀÌ ÏÐÎÂÅÐÎÊ |
||
3.1. (èçìåðèìàÿ) âåëè÷èíà; ôèçè÷åñêàÿ âåëè÷èíà Ïðèçíàê ÿâëåíèÿ, ìàòåðèàëà èëè âåùåñòâà, êîòîðûé ìîæíî ðàçëè÷èòü êà÷åñòâåííî è îïðåäåëèòü êîëè÷åñòâåííî [ï. 1]. Ïðèìå÷àíèÿ 1. Òåðìèí «âåëè÷èíà» ìîæåò îòíîñèòüñÿ ê êîëè÷åñòâó â îáùåì ñìûñëå, íàïðèìåð äëèíà, âðåìÿ, ìàññà, òåìïåðàòóðà, ýëåêòðè÷åñêîå ñîïðîòèâëåíèå, èëè ê îïðåäåëåííûì óñòàíîâëåííûì âåëè÷èíàì, íàïðèìåð äëèíà îïðåäåëåííîãî ñòåðæíÿ, ýëåêòðè÷åñêîå ñîïðîòèâëåíèå îïðåäåëåííîé ïðîâîëîêè. 2. Âåëè÷èíû, êîòîðûå âçàèìíî ñðàâíèìû, ìîæíî îáúåäèíÿòü â êîëè÷åñòâåííûå êàòåãîðèè, íàïðèìåð: - ðàáîòà, òåïëî, ýíåðãèÿ; - òîëùèíà, ïåðèìåòð, äëèíà âîëíû. 3. Ñèìâîëû äëÿ âåëè÷èí ïðèâåäåíû â ÈÑÎ 31.0 - ÈÑÎ 31.13. 4. Èçìåðèìûå âåëè÷èíû ìîæíî îïðåäåëèòü êîëè÷åñòâåííî. |
en (measurable) quantity fr grandeur (measurable) |
|
3.2. èñòèííîå çíà÷åíèå (âåëè÷èíû) Çíà÷åíèå, êîòîðîå èäåàëüíûì îáðàçîì îïðåäåëÿåò âåëè÷èíó ïðè òåõ óñëîâèÿõ, ïðè êîòîðûõ ýòó âåëè÷èíó ðàññìàòðèâàþò [ï. 1]. Ïðèìå÷àíèå - Èñòèííîå çíà÷åíèå - òåîðåòè÷åñêîå ïîíÿòèå, êîòîðîå íåëüçÿ îïðåäåëèòü òî÷íî. |
en true value (of a quantity) fr valeur vraie (d’une qrandeur) |
|
3.3. äåéñòâèòåëüíîå çíà÷åíèå (âåëè÷èíû) Çíà÷åíèå âåëè÷èíû, êîòîðîå äëÿ äàííîé öåëè ìîæíî ðàññìàòðèâàòü êàê èñòèííîå [ï. 1], [ï. 2]. Ïðèìå÷àíèÿ 1. Äåéñòâèòåëüíîå çíà÷åíèå â îáùåì ñìûñëå ðàññìàòðèâàþò êàê äîñòàòî÷íî áëèçêîå ê èñòèííîìó çíà÷åíèþ, ïîñêîëüêó ðàçíèöà íå èìååò áîëüøîãî çíà÷åíèÿ äëÿ äàííîé öåëè. 2. Çíà÷åíèå, ïðèïèñàííîå â îðãàíèçàöèè íåêîòîðîìó ýòàëîíó, ìîæíî ðàññìàòðèâàòü êàê äåéñòâèòåëüíîå çíà÷åíèå âåëè÷èíû, âîñïðîèçâîäèìîé ýòèì ýòàëîíîì. |
en conventional true value (of a quantity) fr valeur conventionnellement vraie |
|
3.4. ïðèíÿòîå íîðìàëüíîå çíà÷åíèå Çíà÷åíèå âåëè÷èíû, ñëóæàùåå ñîãëàñîâàííûì ýòàëîíîì äëÿ ñðàâíåíèÿ è îïðåäåëÿåìîå êàê: à) òåîðåòè÷åñêîå èëè óñòàíîâëåííîå çíà÷åíèå, îñíîâàííîå íà íàó÷íûõ ïðèíöèïàõ; b) ïðèíÿòîå èëè ñåðòèôèöèðîâàííîå çíà÷åíèå, îñíîâàííîå íà ýêñïåðèìåíòàëüíûõ äàííûõ íåêîòîðûõ íàöèîíàëüíûõ èëè ìåæäóíàðîäíûõ îðãàíèçàöèé; ñ) ñîãëàñîâàííîå (íà îñíîâå êîíñåíñóñà) èëè ñåðòèôèöèðîâàííîå çíà÷åíèå, îñíîâàííîå íà ñîâìåñòíîé ýêñïåðèìåíòàëüíîé ðàáîòå, ïðîâîäèìîé íàó÷íûì èëè èíæåíåðíûì êîëëåêòèâîì; d) êîãäà à), b) è ñ) íå ïîäõîäÿò, ìàòåìàòè÷åñêîå îæèäàíèå èçìåðèìîé âåëè÷èíû, òî åñòü ñðåäíåå àðèôìåòè÷åñêîå èçìåðåíèé êîíêðåòíîé ñîâîêóïíîñòè. |
en accepted reference value fr valeur de reference acceptee |
|
Âåëè÷èíà, ïîäâåðãàåìàÿ èçìåðåíèþ [1], [2]. Ïðèìå÷àíèå - Ïî îáñòîÿòåëüñòâàì ýòî ìîæåò áûòü âåëè÷èíà, èçìåðÿåìàÿ êîëè÷åñòâåííî èëè êà÷åñòâåííî. |
en meausurand fr mesurande |
|
Çíà÷åíèå äàííîãî ïðèçíàêà, ïîëó÷åííîå â ðåçóëüòàòå åäèíè÷íîãî íàáëþäåíèÿ (ïî ÈÑÎ 5725.1). |
en observed value fr valeur observee |
|
Çíà÷åíèå íåêîòîðîãî ïðèçíàêà, ïîëó÷åííîå ïðèìåíåíèåì îïðåäåëåííîãî ìåòîäà ïðîâåðêè. Ïðèìå÷àíèÿ 1. Ïîä ïðîâåðêîé ìîæíî ïîíèìàòü òàêèå ïðîöåäóðû, êàê èçìåðåíèå, èñïûòàíèå, êîíòðîëü è ò.ä. 2.  ìåòîäå ïðîâåðêè äîëæíî áûòü óòî÷íåíî, ÷òî áóäóò âûïîëíÿòü îäíî èëè íåñêîëüêî èíäèâèäóàëüíûõ íàáëþäåíèé, ÷òî áóäóò ðåãèñòðèðîâàòü â êà÷åñòâå ðåçóëüòàòà ïðîâåðêè - èõ ñðåäíåå àðèôìåòè÷åñêîå èëè èíóþ ïîäõîäÿùóþ ôóíêöèþ, òàêóþ êàê ìåäèàíà èëè ñòàíäàðòíîå îòêëîíåíèå. Ìîæåò òàêæå ïîòðåáîâàòüñÿ ïðèìåíèòü ñòàíäàðòíûé ìåòîä êîððåêòèðîâêè, íàïðèìåð ïîïðàâêó íà îáúåì ãàçà ïðè ñòàíäàðòíûõ òåìïåðàòóðå è äàâëåíèè òàêèì îáðàçîì, ÷òî ðåçóëüòàò ïðîâåðêè ìîæåò áûòü ðåçóëüòàòîì, âû÷èñëåííûì ïî íåñêîëüêèì íàáëþäàåìûì çíà÷åíèÿì.  ïðîñòîì ñëó÷àå ðåçóëüòàò ïðîâåðêè - ýòî ñàìî íàáëþäàåìîå çíà÷åíèå. |
en test result fr resultat d’essai |
|
3.8. îøèáêà ðåçóëüòàòà (ïðîâåðêè) Ðåçóëüòàò ïðîâåðêè ìèíóñ ïðèíÿòîå íîðìàëüíîå çíà÷åíèå âåëè÷èíû (ïî ÈÑÎ 5725.1). Ïðèìå÷àíèå - Îøèáêà - ýòî ñóììà ñëó÷àéíûõ îøèáîê è ñèñòåìàòè÷åñêèõ îøèáîê. |
en error of result fr erreur de resultat |
|
3.9. ñëó÷àéíàÿ îøèáêà ðåçóëüòàòà (ïðîâåðêè) Êîìïîíåíò îøèáêè, êîòîðûé èçìåíÿåòñÿ íåïðåäâèäåííûì îáðàçîì â õîäå ïîëó÷åíèÿ ðåçóëüòàòîâ ïðîâåðêè îäíîãî ïðèçíàêà (ïî ÈÑÎ 5725.1). Ïðèìå÷àíèå - Ñëó÷àéíóþ îøèáêó ðåçóëüòàòà ïðîâåðêè íåëüçÿ ñêîððåêòèðîâàòü. |
en random error of result fr erreur aleatoire de resultat |
|
3.10. ñèñòåìàòè÷åñêàÿ îøèáêà ðåçóëüòàòà (ïðîâåðêè) Êîìïîíåíò îøèáêè ðåçóëüòàòà, êîòîðûé îñòàåòñÿ ïîñòîÿííûì èëè çàêîíîìåðíî èçìåíÿåòñÿ â õîäå ïîëó÷åíèÿ ðåçóëüòàòîâ ïðîâåðêè äëÿ îäíîãî ïðèçíàêà. Ïðèìå÷àíèå - Ñèñòåìàòè÷åñêèå îøèáêè è èõ ïðè÷èíû ìîãóò áûòü èçâåñòíû èëè íåèçâåñòíû. |
en systematic error of result fr erreur systematique de resultat |
|
3.11. òî÷íîñòü (ðåçóëüòàòà ïðîâåðêè) Áëèçîñòü ðåçóëüòàòà ïðîâåðêè ê ïðèíÿòîìó íîðìàëüíîìó çíà÷åíèþ âåëè÷èíû (ïî ÈÑÎ 5725.1). Ïðèìå÷àíèå - Ïîíÿòèå òî÷íîñòè, êîãäà åãî îòíîñÿò ê ðåçóëüòàòàì ïðîâåðêè, âêëþ÷àåò â ñåáÿ êîìáèíàöèþ ñëó÷àéíûõ êîìïîíåíòîâ è îáùåãî êîìïîíåíòà ñèñòåìàòè÷åñêîé îøèáêè èëè ñìåùåíèÿ. |
en accuracy fr exactitude |
|
3.12. ïðàâèëüíîñòü (ðåçóëüòàòà ïðîâåðêè) Áëèçîñòü ñðåäíåãî çíà÷åíèÿ, ïîëó÷åííîãî â äëèííîì ðÿäó ðåçóëüòàòîâ ïðîâåðîê, ê ïðèíÿòîìó íîðìàëüíîìó çíà÷åíèþ âåëè÷èíû (ïî ÈÑÎ 5725.1). Ïðèìå÷àíèå - Ìåðó ïðàâèëüíîñòè îáû÷íî âûðàæàþò â òåðìèíàõ ñìåùåíèÿ. |
en trueness fr justesse |
|
3.13. ñìåùåíèå (ðåçóëüòàòà ïðîâåðêè) Ðàçíîñòü ìåæäó ìàòåìàòè÷åñêèì îæèäàíèåì ðåçóëüòàòîâ ïðîâåðêè è ïðèíÿòûì íîðìàëüíûì çíà÷åíèåì (ïî ÈÑÎ 5725.1). Ïðèìå÷àíèå - Ñìåùåíèå - ýòî îáùàÿ ñèñòåìàòè÷åñêàÿ îøèáêà â ïðîòèâîïîëîæíîñòü ñëó÷àéíîé îøèáêå. Ìîæåò áûòü îäèí èëè íåñêîëüêî êîìïîíåíòîâ, îáðàçóþùèõ ñèñòåìàòè÷åñêóþ îøèáêó. Áîëüøåå ñèñòåìàòè÷åñêîå ñìåùåíèå îò ïðèíÿòîãî çíà÷åíèÿ ñîîòâåòñòâóåò áîëüøîìó çíà÷åíèþ ñìåùåíèÿ. |
en bias fr biais |
|
3.14. ïðåöèçèîííîñòü (ðåçóëüòàòà ïðîâåðêè) Áëèçîñòü ìåæäó íåçàâèñèìûìè ðåçóëüòàòàìè ïðîâåðêè, ïîëó÷åííûìè ïðè îïðåäåëåííûõ ïðèíÿòûõ óñëîâèÿõ (ïî ÈÑÎ 5725.1). Ïðèìå÷àíèÿ 1. Ïðåöèçèîííîñòü çàâèñèò îò ðàñïðåäåëåíèÿ ñëó÷àéíûõ îøèáîê è íå ñâÿçàíà íè ñ èñòèííûì çíà÷åíèåì, íè ñ çàäàííûì çíà÷åíèåì. 2. Ìåðó ïðåöèçèîííîñòè îáû÷íî âûðàæàþò â òåðìèíàõ ðàññåÿíèÿ è âû÷èñëÿþò êàê ñòàíäàðòíîå îòêëîíåíèå ðåçóëüòàòîâ ïðîâåðêè. Ìàëîé ïðåöèçèîííîñòè ñîîòâåòñòâóåò áîëüøîå ñòàíäàðòíîå îòêëîíåíèå. 3. Íåçàâèñèìûå ðåçóëüòàòû ïðîâåðêè îçíà÷àþò ðåçóëüòàòû, ïîëó÷åííûå òàêèì îáðàçîì, ÷òî îòñóòñòâóåò âëèÿíèå ïðåäûäóùèõ ðåçóëüòàòîâ íà òîì æå ñàìîì èëè àíàëîãè÷íîì îáúåêòå ïðîâåðêè. Êîëè÷åñòâåííûå ìåðû ïðåöèçèîííîñòè ðåøàþùèì îáðàçîì çàâèñÿò îò ïðèíÿòûõ óñëîâèé. Óñëîâèÿ ïîâòîðÿåìîñòè è âîñïðîèçâîäèìîñòè ÿâëÿþòñÿ ðàçíûìè ñòåïåíÿìè ïðèíÿòûõ óñëîâèé. |
en precision fr fidelite |
|
3.15. ïîâòîðÿåìîñòü (ðåçóëüòàòà ïðîâåðêè); ñõîäèìîñòü Ïðåöèçèîííîñòü â óñëîâèÿõ ïîâòîðÿåìîñòè (ïî ÈÑÎ 5725.1) |
en repeatability fr repetabilite |
|
Óñëîâèÿ, ïðè êîòîðûõ íåçàâèñèìûå ðåçóëüòàòû ïðîâåðêè ïîëó÷åíû îäíèì ìåòîäîì, íà èäåíòè÷íûõ èñïûòàòåëüíûõ îáðàçöàõ, â îäíîé ëàáîðàòîðèè, îäíèì îïåðàòîðîì, ñ èñïîëüçîâàíèåì îäíîãî îáîðóäîâàíèÿ è çà êîðîòêèé èíòåðâàë âðåìåíè (ïî ÈÑÎ 5725.1). |
en repeatability conditions fr conditions de repetabilite |
|
3.17. ñòàíäàðòíîå îòêëîíåíèå ïîâòîðÿåìîñòè Ñòàíäàðòíîå îòêëîíåíèå ðåçóëüòàòîâ ïðîâåðêè, ïîëó÷åííûõ â óñëîâèÿõ ïîâòîðÿåìîñòè (ïî ÈÑÎ 5725.1). Ïðèìå÷àíèÿ 1. Ýòî ìåðà ðàññåÿíèÿ ðåçóëüòàòîâ ïðîâåðêè â óñëîâèÿõ ïîâòîðÿåìîñòè. 2. Àíàëîãè÷íî «äèñïåðñèþ ïîâòîðÿåìîñòè» è «êîýôôèöèåíò âàðèàöèè ïîâòîðÿåìîñòè» íàäî îïðåäåëÿòü êàê ìåðû ðàññåÿíèÿ ðåçóëüòàòîâ ïðîâåðêè â óñëîâèÿõ ïîâòîðÿåìîñòè. |
en repeatability standard deviation fr ecart-type de repetabilite |
|
Çíà÷åíèå, êîòîðîå ìåíüøå èëè ðàâíî àáñîëþòíîé ðàçíîñòè ìåæäó äâóìÿ ðåçóëüòàòàìè ïðîâåðîê, ïîëó÷àåìûìè â óñëîâèÿõ ïîâòîðÿåìîñòè, îæèäàåìîå ñ âåðîÿòíîñòüþ 95 % (ïî ÈÑÎ 5725.1). Ïðèìå÷àíèÿ 1. Èñïîëüçóþò îáîçíà÷åíèå r. 2.  íàñòîÿùåå âðåìÿ â íîðìàòèâíûõ äîêóìåíòàõ ïðèíÿòî îáîçíà÷åíèå d. |
en repeatability limit fr limite de repetabilite |
|
3.19. êðèòè÷åñêàÿ ðàçíîñòü ïîâòîðÿåìîñòè Çíà÷åíèå, ìåíüøåå èëè ðàâíîå àáñîëþòíîé ðàçíîñòè ìåæäó äâóìÿ êîíå÷íûìè çíà÷åíèÿìè, êàæäîå èç êîòîðûõ ïðåäñòàâëÿåò ñîáîé ðÿäû ðåçóëüòàòîâ ïðîâåðîê, ïîëó÷åííûõ â óñëîâèÿõ ïîâòîðÿåìîñòè, îæèäàåìîå ñ çàäàííîé âåðîÿòíîñòüþ (ïî ÈÑÎ 5725.1). Ïðèìå÷àíèÿ 1. Ïðèìåðàìè êîíå÷íûõ ðåçóëüòàòîâ ñëóæàò ñðåäíåå àðèôìåòè÷åñêîå è âûáîðî÷íàÿ ìåäèàíà ðÿäîâ ðåçóëüòàòîâ ïðîâåðîê; ñàìè ðÿäû ìîãóò ñîäåðæàòü òîëüêî ïî îäíîìó ðåçóëüòàòó ïðîâåðêè. 2. Ïðåäåë ïîâòîðÿåìîñòè r - ýòî êðèòè÷åñêàÿ ðàçíîñòü ïîâòîðÿåìîñòè äëÿ äâóõ åäèíè÷íûõ ðåçóëüòàòîâ ïðîâåðêè ïðè âåðîÿòíîñòè 95 %. |
en repeatability critical difference fr difference critique de repetabilite |
|
3.20. âîñïðîèçâîäèìîñòü (ðåçóëüòàòîâ ïðîâåðêè) Ïðåöèçèîííîñòü â óñëîâèÿõ âîñïðîèçâîäèìîñòè (ïî ÈÑÎ 5725.1). |
en reproducibility fr reproductibilite |
|
3.21. óñëîâèÿ âîñïðîèçâîäèìîñòè Óñëîâèÿ, ïðè êîòîðûõ ðåçóëüòàòû ïðîâåðêè ïîëó÷åíû îäíèì ìåòîäîì, íà èäåíòè÷íûõ èñïûòàòåëüíûõ îáðàçöàõ, â ðàçëè÷íûõ ëàáîðàòîðèÿõ, ðàçíûìè îïåðàòîðàìè, ñ èñïîëüçîâàíèåì ðàçëè÷íîãî îáîðóäîâàíèÿ (ïî ÈÑÎ 5725.1). |
en reproducibility conditions fr conditions de reproductibilite |
|
3.22. ñòàíäàðòíîå îòêëîíåíèå âîñïðîèçâîäèìîñòè Ñòàíäàðòíîå îòêëîíåíèå ðåçóëüòàòîâ ïðîâåðêè, ïîëó÷åííûõ â óñëîâèÿõ âîñïðîèçâîäèìîñòè. Ïðèìå÷àíèÿ 1. Ýòî ìåðà ðàññåÿíèÿ ðàñïðåäåëåíèÿ ðåçóëüòàòîâ ïðîâåðêè â óñëîâèÿõ âîñïðîèçâîäèìîñòè. 2. Àíàëîãè÷íî «äèñïåðñèþ âîñïðîèçâîäèìîñòè» è «êîýôôèöèåíò âàðèàöèè âîñïðîèçâîäèìîñòè» íàäî îïðåäåëÿòü êàê ìåðû ðàññåÿíèÿ ðåçóëüòàòîâ ïðîâåðêè â óñëîâèÿõ âîñïðîèçâîäèìîñòè. |
en reproducibility standard deviation fr ecart-type de reproductibilite |
|
3.23. ïðåäåë âîñïðîèçâîäèìîñòè Çíà÷åíèå, ìåíüøåå èëè ðàâíîå àáñîëþòíîé ðàçíîñòè ìåæäó äâóìÿ ðåçóëüòàòàìè ïðîâåðêè, ïîëó÷åííûìè â óñëîâèÿõ âîñïðîèçâîäèìîñòè, îæèäàåìîå ñ âåðîÿòíîñòüþ 95 % (ïî ÈÑÎ 5725.1). Ïðèìå÷àíèÿ 1. Èñïîëüçóþò îáîçíà÷åíèå R. 2.  íàñòîÿùåå âðåìÿ â íîðìàòèâíûõ äîêóìåíòàõ ïðèíÿòî îáîçíà÷åíèå D. |
en reproducibility limit fr limite de reproductibilite |
|
3.24. êðèòè÷åñêàÿ ðàçíîñòü âîñïðîèçâîäèìîñòè Çíà÷åíèå, ìåíüøåå èëè ðàâíîå àáñîëþòíîé ðàçíîñòè ìåæäó äâóìÿ êîíå÷íûìè çíà÷åíèÿìè, êàæäîå èç êîòîðûõ ïðåäñòàâëÿåò ñîáîé ðÿäû ðåçóëüòàòîâ ïðîâåðîê, ïîëó÷åííûõ â óñëîâèÿõ âîñïðîèçâîäèìîñòè, îæèäàåìîå ñ çàäàííîé âåðîÿòíîñòüþ (ïî ÈÑÎ 5725.1). Ïðèìå÷àíèå - Ïðèìåðàìè êîíå÷íûõ ðåçóëüòàòîâ ñëóæàò ñðåäíåå àðèôìåòè÷åñêîå è âûáîðî÷íàÿ ìåäèàíà ðÿäîâ ðåçóëüòàòîâ ïðîâåðîê; ðÿäû ìîãóò ñîäåðæàòü òîëüêî ïî îäíîìó ðåçóëüòàòó ïðîâåðêè. |
en reproducibility critical difference fr difference critique de reproductibilite |
|
3.25. íåîïðåäåëåííîñòü (ðåçóëüòàòà ïðîâåðêè) Îöåíêà, îòíîñÿùàÿñÿ ê ðåçóëüòàòó ïðîâåðêè, êîòîðàÿ õàðàêòåðèçóåò îáëàñòü çíà÷åíèé, âíóòðè êîòîðîé ëåæèò èñòèííîå çíà÷åíèå. Ïðèìå÷àíèÿ 1. Íåîïðåäåëåííîñòü èçìåðÿåò ñîâîêóïíîñòü ìíîãèõ êîìïîíåíòîâ. Íåêîòîðûå èç íèõ ìîæíî îöåíèòü íà îñíîâå ñòàòèñòè÷åñêîãî ðàñïðåäåëåíèÿ ðåçóëüòàòîâ â ðÿäàõ èçìåðåíèé è îõàðàêòåðèçîâàòü ñòàíäàðòíûìè îòêëîíåíèÿìè. Îöåíêè äðóãèõ êîìïîíåíòîâ âîçìîæíû òîëüêî íà îñíîâå îïûòà èëè èç äðóãèõ èñòî÷íèêîâ èíôîðìàöèè. 2. Íåîïðåäåëåííîñòü ñëåäóåò îòëè÷àòü îò îöåíêè, ñâÿçàííîé ñ ðåçóëüòàòîì ïðîâåðêè, êîòîðàÿ õàðàêòåðèçóåòñÿ çíà÷åíèÿìè èíòåðâàëîâ, âíóòðè êîòîðûõ ëåæèò ìàòåìàòè÷åñêîå îæèäàíèå. Ýòà ïîñëåäíÿÿ îöåíêà - ìåðà ïðåöèçèîííîñòè, à íå ïðàâèëüíîñòè, è åå íàäî èñïîëüçîâàòü, òîëüêî åñëè èñòèííîå çíà÷åíèå íå îïðåäåëåíî. Êîãäà ìàòåìàòè÷åñêîå îæèäàíèå èñïîëüçóþò âìåñòî èñòèííîãî çíà÷åíèÿ, íàäî óïîòðåáëÿòü âûðàæåíèå «ñëó÷àéíûé êîìïîíåíò íåîïðåäåëåííîñòè». |
en uncertainty fr incertitude |
|
4. ÎÁÙÈÅ ÒÅÐÌÈÍÛ, ÎÒÍÎÑßÙÈÅÑß Ê ÂÛÁÎÐÎ×ÍÛÌ ÌÅÒÎÄÀÌ |
||
à) Îäíà èç êîíêðåòíûõ åäèíèö, èç êîòîðûõ ñîñòîèò ãåíåðàëüíàÿ ñîâîêóïíîñòü. b) Îïðåäåëåííîå êîëè÷åñòâî ïðîäóêöèè, ìàòåðèàëà èëè óñëóã, îáðàçóþùåå åäèíñòâî è âçÿòîå èç îäíîãî ìåñòà, â îäíî âðåìÿ äëÿ ôîðìèðîâàíèÿ ÷àñòè âûáîðêè. Ïðèìå÷àíèÿ 1. Âûáîðî÷íàÿ åäèíèöà ìîæåò ñîäåðæàòü áîëåå îäíîãî èçäåëèÿ, äîïóñêàþùåãî èñïûòàíèå, íàïðèìåð ïà÷êà ñèãàðåò, íî ïðè ýòîì ïîëó÷àþò îäèí ðåçóëüòàò èñïûòàíèÿ èëè íàáëþäåíèÿ. 2. Åäèíèöåé ïðîäóêöèè ìîæåò áûòü îäíî èçäåëèå, ïàðà èëè íàáîð èçäåëèé, èëè åþ ìîæåò áûòü îïðåäåëåííîå êîëè÷åñòâî ìàòåðèàëà, òàêîå êàê îòðåçîê ëàòóííîãî ïðóòêà îïðåäåëåííîé äëèíû, îïðåäåëåííûé îáúåì æèäêîé êðàñêè èëè çàäàííàÿ ìàññà óãëÿ. Îíà íåîáÿçàòåëüíî äîëæíà áûòü òàêîé æå, êàê åäèíèöà çàêóïêè, ïîñòàâêè, ïðîèçâîäñòâà èëè îòãðóçêè. |
en sampling unit fr unite d’echantillonnage |
|
Îäíà èëè íåñêîëüêî âûáîðî÷íûõ åäèíèö, âçÿòûõ èç ãåíåðàëüíîé ñîâîêóïíîñòè è ïðåäíàçíà÷åííûõ äëÿ ïîëó÷åíèÿ èíôîðìàöèè î íåé. Ïðèìå÷àíèå - Âûáîðêà [ïðîáà] ìîæåò ñëóæèòü îñíîâîé äëÿ ïðèíÿòèÿ ðåøåíèÿ î ãåíåðàëüíîé ñîâîêóïíîñòè èëè î ïðîöåññå, êîòîðûé åå ôîðìèðóåò. |
en sample fr echantillon |
|
×èñëî âûáîðî÷íûõ åäèíèö â âûáîðêå. |
en sample size fr effectif d’echantillon |
|
Ïðîöåññ èçâëå÷åíèÿ èëè ñîñòàâëåíèÿ âûáîðêè. |
en sampling fr echantillonnage |
|
4.5. ïðîöåäóðà âûáîðî÷íîãî êîíòðîëÿ Ïîîïåðàöèîííûå òðåáîâàíèÿ è (èëè) èíñòðóêöèè, ñâÿçàííûå ñ ðåàëèçàöèåé êîíêðåòíîãî ïëàíà âûáîðî÷íîãî êîíòðîëÿ, òî åñòü çàïëàíèðîâàííûé ìåòîä îòáîðà, èçâëå÷åíèÿ è ïîäãîòîâêè âûáîðêè (âûáîðîê) èç ïàðòèé äëÿ ïîëó÷åíèÿ èíôîðìàöèè î ïðèçíàêå (ïðèçíàêàõ) â ïàðòèè. |
en sampling procedure fr procedure d’echantillonnage |
|
Âûáîðêà, èç êîòîðîé êàæäóþ îòîáðàííóþ è íàáëþäàåìóþ åäèíèöó âîçâðàùàþò â ñîâîêóïíîñòü ïåðåä îòáîðîì ñëåäóþùåé åäèíèöû. Ïðèìå÷àíèå - Îäíà è òà æå åäèíèöà ìîæåò ìíîãîêðàòíî ïîÿâëÿòüñÿ â âûáîðêå. |
en sampling with replacement fr echantillonnage avec remise; echantillonnage non exhaustif |
|
Âûáîðêà, â êîòîðóþ åäèíèöû îòáèðàþò èç ñîâîêóïíîñòè òîëüêî îäèí ðàç èëè ïîñëåäîâàòåëüíî è íå âîçâðàùàþò â íåå. |
en sampling without replacement fr echantillonnage sans remise; echantillonnage exhaustif |
|
Âûáîðêà n âûáîðî÷íûõ åäèíèö, âçÿòûõ èç ñîâîêóïíîñòè òàêèì îáðàçîì, ÷òî êàæäàÿ âîçìîæíàÿ êîìáèíàöèÿ èç n åäèíèö èìååò îïðåäåëåííóþ âåðîÿòíîñòü áûòü îòîáðàííîé. |
en random sample fr echantillon au hasard |
|
4.9. ïðîñòàÿ ñëó÷àéíàÿ âûáîðêà Âûáîðêà n âûáîðî÷íûõ åäèíèö, âçÿòûõ èç ñîâîêóïíîñòè òàêèì îáðàçîì, ÷òî âñå âîçìîæíûå êîìáèíàöèè èç n åäèíèö èìåþò îäèíàêîâóþ âåðîÿòíîñòü áûòü îòîáðàííûìè. |
en simple random sample fr echantillon simple au hasard |
|
Âûáîðêà [ïðîáà], âçÿòàÿ èç âûáîðêè [ïðîáû] ãåíåðàëüíîé ñîâîêóïíîñòè. Ïðèìå÷àíèÿ 1. Åå ìîæíî îòáèðàòü òåì æå ìåòîäîì, ÷òî è ïðè îòáîðå èñõîäíîé âûáîðêè [ïðîáû], íî ýòî íåîáÿçàòåëüíî. 2. Ïðè îòáîðå ïðîáû èç íåøòó÷íîé ïðîäóêöèè ïîäâûáîðêè ÷àñòî ïîëó÷àþò äåëåíèåì ïðîáû. |
en subsample fr sous-echantillon |
|
Ïðîöåññ îòáîðà îäíîé èëè íåñêîëüêèõ ïðîá èç ïðîáû íåøòó÷íîé ïðîäóêöèè òàêèì ñïîñîáîì, êàê íàðåçàíèå, ìåõàíè÷åñêîå äåëåíèå èëè êâàðòîâàíèå. |
en sample division fr division d’un echantillon |
|
4.12. äóáëèðóþùàÿ âûáîðêà [ïðîáà] Îäíà èç äâóõ èëè áîëåå âûáîðîê [ïðîá] èëè ïîäâûáîðîê [ïðîá], ïîëó÷åííûõ îäíîâðåìåííî, îäíèì ìåòîäîì åå îòáîðà èëè äåëåíèåì âûáîðêè [ïðîáû]. |
en duplicate sample fr echantillon dedouble |
|
Ðàçäåëåíèå ñîâîêóïíîñòè íà âçàèìîèñêëþ÷àþùèå è èñ÷åðïûâàþùèå ïîäñîâîêóïíîñòè, íàçûâàåìûå ñëîÿìè, êîòîðûå äîëæíû áûòü áîëåå îäíîðîäíûìè îòíîñèòåëüíî èññëåäóåìûõ ïîêàçàòåëåé, ÷åì âñÿ ñîâîêóïíîñòü. |
en stratification fr stratification |
|
4.14. ðàññëîåííàÿ âûáîðêà [ïðîáà]  ñîâîêóïíîñòè, êîòîðóþ ìîæíî ðàçäåëèòü íà ðàçëè÷íûå âçàèìíî èñêëþ÷àþùèå è èñ÷åðïûâàþùèå ïîäñîâîêóïíîñòè, íàçûâàåìûå ñëîÿìè, îòáîð, ïðîâîäèìûé òàêèì îáðàçîì, ÷òî â âûáîðêó [ïðîáó] îòáèðàþò îïðåäåëåííûå äîëè îò ðàçíûõ ñëîåâ è êàæäûé ñëîé ïðåäñòàâëÿþò õîòÿ áû îäíîé âûáîðî÷íîé åäèíèöåé. |
en stratified sampling fr echantillonnage stratifie |
|
Îòáîð âûáîðêè êàêèì-ëèáî ñèñòåìàòè÷åñêèì ìåòîäîì. |
en systematic sampling fr echantillonnage systematique |
|
4.16. ïåðèîäè÷åñêèé ñèñòåìàòè÷åñêèé îòáîð Îòáîð n âûáîðî÷íûõ åäèíèö ñ ïîðÿäêîâûìè íîìåðàìè: h, h + k, h + 2k, ..., h + (n - 1) k, ãäå h è k - öåëûå ÷èñëà, óäîâëåòâîðÿþùèå ñîîòíîøåíèÿì
è h îáû÷íî âûáèðàþò ñëó÷àéíî èç k ïåðâûõ öåëûõ ÷èñåë, åñëè N îáúåêòîâ ñîâîêóïíîñòè ðàñïîëîæåíû ïî îïðåäåëåííîé ñèñòåìå è åñëè îíè ïðîíóìåðîâàíû îò 1 äî N. Ïðèìå÷àíèå - Ïåðèîäè÷åñêèé ñèñòåìàòè÷åñêèé îòáîð îáû÷íî ïðèìåíÿþò äëÿ ïîëó÷åíèÿ âûáîðêè, êîòîðàÿ ñëó÷àéíà ïî îòíîøåíèþ ê íåêîòîðûì ïðèçíàêàì, î êîòîðûõ èçâåñòíî, ÷òî îíè íå çàâèñÿò îò ñèñòåìàòè÷åñêîãî ñìåùåíèÿ. |
en periodic systematic sampling fr echantillonnage systematique periodique |
|
Èíòåðâàë âðåìåíè, â òå÷åíèå êîòîðîãî áåðóò î÷åðåäíóþ âûáîðî÷íóþ åäèíèöó ïðè ïåðèîäè÷åñêîì ñèñòåìàòè÷åñêîì îòáîðå. Ïðèìå÷àíèå - Ïåðèîä îòáîðà ìîæåò áûòü ïîñòîÿííûì èëè çàâèñåòü îò âûõîäà èëè îò ñêîðîñòè ïðîöåññà, òî åñòü çàâèñåòü îò êîëè÷åñòâà ìàòåðèàëà, èçãîòîâëåííîãî â ïðîèçâîäñòâåííîì ïðîöåññå èëè çàãðóæåííîãî â ïðîöåññå ïîãðóçêè. |
en sampling interval fr intervalle d’echantillonnage |
|
4.18. êëàñòåðíûé îòáîð; îòáîð ìåòîäîì ãðóïïèðîâêè Ñïîñîá îòáîðà, ïðè êîòîðîì ñîâîêóïíîñòü ðàçäåëÿþò íà âçàèìîèñêëþ÷àþùèå è èñ÷åðïûâàþùèå ãðóïïû èëè êëàñòåðû, â êîòîðûõ âûáîðî÷íûå åäèíèöû îáúåäèíåíû îïðåäåëåííûì îáðàçîì, è âûáîðêó èç ýòèõ êëàñòåðîâ áåðóò ñëó÷àéíî, ïðè÷åì âñå âûáîðî÷íûå åäèíèöû âêëþ÷àþò â îáùóþ âûáîðêó. |
en cluster sampling fr ehantillonnage en grappe |
|
Îòáîð, ïðè êîòîðîì âûáîðêó áåðóò â íåñêîëüêî ñòàäèé, âûáîðî÷íûå åäèíèöû íà êàæäîé ñòàäèè îòáèðàþò èç áîëüøèõ âûáîðî÷íûõ åäèíèö, îòîáðàííûõ íà ïðåäûäóùåé ñòàäèè. |
en multi-stage sampling; nested sampling fr echantillonnage a plusieurs degres; echantillonnage en serie |
|
4.20. ìíîãîñòàäèéíûé êëàñòåðíûé îòáîð Êëàñòåðíûé îòáîð, ïðîâåäåííûé â äâå èëè áîëåå ñòàäèè, ïðè êîòîðîì êàæäûé îòáîð äåëàþò èç êëàñòåðîâ, êîòîðûå óæå ïîëó÷åíû èç ðàçäåëåíèÿ ïðåäøåñòâóþùåé âûáîðêè. |
en multi-stage cluster sampling fr echantillonnage en grappe a plusieurs degres |
|
4.21. ïåðâè÷íàÿ âûáîðêà [ïðîáà] Âûáîðêà [ïðîáà], ïîëó÷àåìàÿ èç ñîâîêóïíîñòè íà ïåðâîé ñòàäèè ìíîãîñòàäèéíîãî îòáîðà |
en primary sample fr echantillonnage primaire |
|
4.22. âòîðè÷íàÿ âûáîðêà [ïðîáà] Âûáîðêà [ïðîáà], ïîëó÷àåìàÿ èç ïåðâè÷íîé âûáîðêè [ïðîáû] íà âòîðîé ñòàäèè ìíîãîñòàäèéíîãî îòáîðà. Ïðèìå÷àíèå - Ýòî ìîæíî ðàñïðîñòðàíèòü íà k-þ ñòàäèþ ïðè k > 2. |
en secondary sample fr echantillon secondaire |
|
Âûáîðêà, ïîëó÷àåìàÿ íà ïîñëåäíåé ñòàäèè ìíîãîñòàäèéíîãî îòáîðà. |
en final sample fr echantillon final |
|
à) Îòíîøåíèå îáúåìà âûáîðêè ê îáùåìó ÷èñëó âûáîðî÷íûõ åäèíèö. b) Êîãäà îòáèðàþò íåøòó÷íóþ èëè íåïðåðûâíî ïðîèçâîäèìóþ ïðîäóêöèþ, âûáîðî÷íóþ äîëþ îïðåäåëÿþò îòíîøåíèåì êîëè÷åñòâà ïðîáû ê êîëè÷åñòâó ñîâîêóïíîñòè èëè ïîäñîâîêóïíîñòè. Ïðèìå÷àíèå - Ïîä êîëè÷åñòâîì ïðîáû èëè ñîâîêóïíîñòè ïîíèìàþò ìàññó, îáúåì, ïëîùàäü è ò.ä. |
en sampling fraction fr taux d’echantillonnage; fraction de sondage |
|
Êîëè÷åñòâî íåøòó÷íîé ïðîäóêöèè, âçÿòîå åäèíîâðåìåííî çà îäèí ïðèåì èç áîëüøåãî îáúåìà ýòîé æå ïðîäóêöèè. |
en increment fr prelevement elementaire |
|
×àñòü âûáîðî÷íîé åäèíèöû, òðåáóåìàÿ äëÿ öåëåé èñïûòàíèÿ. |
en test piece fr eprouvette |
|
Îòáîð èç ïàðòèé íåøòó÷íîé ïðîäóêöèè, ãäå âûáîðî÷íûå åäèíèöû èçíà÷àëüíî òðóäíîðàçëè÷èìû. Ïðèìå÷àíèå - Ïðèìåðàìè ìîãóò ñëóæèòü îòáîð ïðîá èç áîëüøèõ êó÷ óãëÿ äëÿ àíàëèçà íà ñîäåðæàíèå çîëû èëè òåïëîòû ñãîðàíèÿ, èëè òàáàêà íà ñîäåðæàíèå âëàãè. |
en bulk sampling fr echantillonnage en vrac |
|
Îáúåäèíåíèå ìãíîâåííûõ ïðîá ìàòåðèàëà, êîãäà îòáèðàþò íåøòó÷íóþ ïðîäóêöèþ. |
en aggregated sample fr echantillon d’ensemble |
|
4.29. îáúåäèíåííàÿ âûáîðêà [ïðîáà] Âûáîðêà [ïðîáà] èç ñîâîêóïíîñòè, ïîëó÷àåìàÿ îáúåäèíåíèåì âñåõ âûáîðî÷íûõ åäèíèö, âçÿòûõ èç ýòîé ñîâîêóïíîñòè. |
en gross sample fr echantillon global |
|
Äëÿ íåøòó÷íîé ïðîäóêöèè - ñèñòåìà îïåðàöèé, òàêèõ êàê èçìåëü÷åíèå, ñìåøèâàíèå, äåëåíèå è ò.ä., íåîáõîäèìûõ äëÿ ïðåâðàùåíèÿ îòîáðàííîé ïðîáû ìàòåðèàëà â ëàáîðàòîðíóþ ïðîáó èëè ïðîáó äëÿ èñïûòàíèé. Ïðèìå÷àíèå - Ïîäãîòîâêà ïðîáû íå äîëæíà, íàñêîëüêî ýòî âîçìîæíî, èçìåíÿòü ðåïðåçåíòàòèâíîñòü ñîâîêóïíîñòè, èç êîòîðîé îíà èçãîòîâëåíà. |
en sample preparation fr preparation d’un echantillon |
|
Ïðîáà, ïðåäíàçíà÷åííàÿ äëÿ ëàáîðàòîðíûõ èññëåäîâàíèé èëè èñïûòàíèé. |
en laboratory sample fr echantillon pour laboratoire |
|
Ïðîáà, ïîäãîòîâëåííàÿ äëÿ ïðîâåäåíèÿ èñïûòàíèé èëè àíàëèçà, êîòîðóþ ïîëíîñòüþ è åäèíîâðåìåííî èñïîëüçóþò äëÿ ïðîâåäåíèÿ èñïûòàíèÿ èëè àíàëèçà. |
en test sample; analysis sample fr echantillon pour essai; echantillon pour analyse |
|
c2-êðèòåðèé 2.86
F-êðèòåðèé 2.88
F-ðàñïðåäåëåíèå 1.41
t-êðèòåðèé 2.87
t-ðàñïðåäåëåíèå 1.40
áåòà-ðàñïðåäåëåíèå 1.45
âåëè÷èíà (èçìåðèìàÿ) 3.1
âåëè÷èíà èçìåðÿåìàÿ 3.5
âåëè÷èíà ñòàíäàðòèçîâàííàÿ ñëó÷àéíàÿ 1.25
âåëè÷èíà ñëó÷àéíàÿ 1.2
âåëè÷èíà öåíòðèðîâàííàÿ ñëó÷àéíàÿ 1.21
âåëè÷èíà ôèçè÷åñêàÿ 3.1
âåðîÿòíîñòü 1.1
âåðîÿòíîñòü äîâåðèòåëüíàÿ 2.59
âåðîÿòíîñòü îøèáêè âòîðîãî ðîäà 2.78
âåðîÿòíîñòü îøèáêè ïåðâîãî ðîäà 2.76
âîñïðîèçâîäèìîñòü (ðåçóëüòàòîâ ïðîâåðêè) 3.20
âûáîðêà 4.2
âûáîðêà áåç âîçâðàùåíèÿ 4.7
âûáîðêà (ïðîáà) âòîðè÷íàÿ 4.22
âûáîðêà äóáëèðóþùàÿ 4.12
âûáîðêà êîíå÷íàÿ 4.23
âûáîðêà îáúåäèíåííàÿ 4.28
âûáîðêà ïåðâè÷íàÿ 4.21
âûáîðêà ðàññëîåííàÿ 4.14
âûáîðêà ïðîñòàÿ ñëó÷àéíàÿ 4.9
âûáîðêà ñ âîçâðàùåíèåì 4.6
âûáîðêà ñëó÷àéíàÿ 4.8
âûáðîñû 2.64
ãàììà-ðàñïðåäåëåíèå 1.44
ãèïîòåçà íóëåâàÿ è ãèïîòåçà àëüòåðíàòèâíàÿ 2.66
ãèïîòåçà ïðîñòàÿ 2.67
ãèïîòåçà ñëîæíàÿ 2.68
ãèñòîãðàììà 2.17
ãðàíèöà äîâåðèòåëüíàÿ 2.60
ãðàíèöû êëàññà 2.8
ãðàíèöû òîëåðàíòíûå 2.62
äåëåíèå ïðîáû 4.11
äèàãðàììà ðàçáðîñà 2.21
äèàãðàììà ðàññåÿíèÿ 2.21
äèàãðàììà ñòîëáèêîâàÿ 2.18
äèñïåðñèÿ âûáîðî÷íàÿ 2.33
äèñïåðñèÿ (ñëó÷àéíîé âåëè÷èíû) 1.22
äîëÿ âûáîðî÷íàÿ 4.24
åäèíèöà 2.1
åäèíèöà âûáîðî÷íàÿ 4.1
çíà÷åíèå (âåëè÷èíû) èñòèííîå 3.2
çíà÷åíèå (âåëè÷èíû) äåéñòâèòåëüíîå 3.3
çíà÷åíèå êðèòè÷åñêîå 2.72
çíà÷åíèå íîðìàëüíîå ïðèíÿòîå 3.4
çíà÷åíèå îöåíêè 2.51
èíòåðâàë äâóñòîðîííèé äîâåðèòåëüíûé 2.57
èíòåðâàë êëàññà 2.10
èíòåðâàë îäíîñòîðîííèé äîâåðèòåëüíûé 2.58
èíòåðâàë òîëåðàíòíûé 2.61
êâàíòèëü (ñëó÷àéíîé âåëè÷èíû) 1.14
êâàðòèëü 1.16
êëàññ 2.7
êîâàðèàöèÿ 1.32
êîâàðèàöèÿ âûáîðî÷íàÿ 2.40
êîððåëÿöèÿ 1.13
êîýôôèöèåíò âàðèàöèè âûáîðî÷íûé 2.35
êîýôôèöèåíò âàðèàöèè (ñëó÷àéíîé âåëè÷èíû) 1.24
êîýôôèöèåíò êîððåëÿöèè 1.33
êîýôôèöèåíò êîððåëÿöèè âûáîðî÷íûé 2.41
êîýôôèöèåíò ðåãðåññèè âûáîðî÷íûé 2.44
êðèâàÿ ìîùíîñòè (êðèòåðèÿ) 2.81
êðèâàÿ îïåðàòèâíîé õàðàêòåðèñòèêè 2.83
êðèâàÿ ÎÕ 2.83
êðèâàÿ ðåãðåññèè (Y ïî X) 1.34
êðèâàÿ ðåãðåññèè (Y ïî Õ äëÿ âûáîðêè) 2.42
êðèòåðèé äâóñòîðîííèé 2.74
êðèòåðèé îäíîñòîðîííèé 2.73
êðèòåðèé ñâîáîäíûé îò ðàñïðåäåëåíèÿ 2.69
êðèòåðèé ñîãëàñèÿ ðàñïðåäåëåíèÿ 2.63
êðèòåðèé ñòàòèñòè÷åñêèé 2.65
êðèòåðèé Ñòüþäåíòà 2.87
êðèòåðèé Ôèøåðà 2.88
ìåäèàíà 1.15
ìåäèàíà âûáîðî÷íàÿ 2.28
ìîäà 1.17
ìîìåíò êîððåëÿöèîííûé 1.32
ìîìåíò ïîðÿäêîâ q è s îòíîñèòåëüíî òî÷êè (à, b) ñîâìåñòíûé 1.30
ìîìåíò ïîðÿäêîâ q è s ñîâìåñòíûé öåíòðàëüíûé 1.31
ìîìåíò ïîðÿäêîâ q è s ñîâìåñòíûé öåíòðàëüíûé âûáîðî÷íûé 2.39
ìîìåíò ïîðÿäêà q îòíîñèòåëüíî a 1.27
ìîìåíò ïîðÿäêà q îòíîñèòåëüíî íà÷àëà îòñ÷åòà 1.26
ìîìåíò ïîðÿäêà q îòíîñèòåëüíî íà÷àëà îòñ÷åòà âûáîðî÷íûé 2.36
ìîìåíò ïîðÿäêà q öåíòðàëüíûé 1.28
ìîìåíò ïîðÿäêà q öåíòðàëüíûé âûáîðî÷íûé 2.37
ìîìåíò ïîðÿäêîâ q è s îòíîñèòåëüíî íà÷àëà îòñ÷åòà ñîâìåñòíûé 1.29
ìîìåíò ïîðÿäêîâ q è s îòíîñèòåëüíî íà÷àëà îòñ÷åòà ñîâìåñòíûé âûáîðî÷íûé 2.38
ìîìåíò ïîðÿäêîâ q è s ñîâìåñòíûé öåíòðàëüíûé 1.31
ìîìåíò ïîðÿäêîâ q è s ñîâìåñòíûé öåíòðàëüíûé âûáîðî÷íûé 2.39
ìîùíîñòü êðèòåðèÿ 2.79
íåçàâèñèìîñòü (ñëó÷àéíûõ âåëè÷èí) 1.11
íåîïðåäåëåííîñòü (ðåçóëüòàòà ïðîâåðêè) 3.25
îáëàñòü êðèòè÷åñêàÿ 2.71
îáðàçåö (äëÿ èñïûòàíèé) 4.26
îáúåêò 2.1
îáúåì âûáîðêè 4.3
îæèäàíèå (ñëó÷àéíîé âåëè÷èíû) ìàòåìàòè÷åñêîå 1.18
îæèäàíèå ìàðãèíàëüíîå ìàòåìàòè÷åñêîå 1.19
îæèäàíèå óñëîâíîå ìàòåìàòè÷åñêîå 1.20
îòáîð âûáîðêè 4.4
îòáîð ïðîá 4.27
îòáîð êëàñòåðíûé 4.18
îòáîð ìåòîäîì ãðóïïèðîâêè 4.18
îòáîð ìíîãîñòàäèéíûé 4.19
îòáîð êëàñòåðíûé ìíîãîñòàäèéíûé 4.20
îòáîð ïåðèîäè÷åñêèé ñèñòåìàòè÷åñêèé 4.16
îòáîð ñèñòåìàòè÷åñêèé 4.15
îòêëîíåíèå (ñëó÷àéíîé âåëè÷èíû) ñòàíäàðòíîå 1.23
îòêëîíåíèå âîñïðîèçâîäèìîñòè ñòàíäàðòíîå 3.22
îòêëîíåíèå ïîâòîðÿåìîñòè ñòàíäàðòíîå 3.17
îòêëîíåíèå (âûáîðêè) ñðåäíåå 2.32
îòêëîíåíèå ñòàíäàðòíîå âûáîðî÷íîå 2.34
îòêëîíåíèå ñòàíäàðòíîå îòíîñèòåëüíîå 2.35
îöåíèâàíèå (ïàðàìåòðà) 2.49
îöåíêà 2.50
îöåíêà íåñìåùåííàÿ 2.55
îøèáêà âòîðîãî ðîäà 2.77
îøèáêà ïåðâîãî ðîäà 2.75
îøèáêà ðåçóëüòàòà (ïðîâåðêè) 3.8
îøèáêà ðåçóëüòàòà (ïðîâåðêè) ñèñòåìàòè÷åñêàÿ 3.10
îøèáêà ðåçóëüòàòà (ïðîâåðêè) ñëó÷àéíàÿ 3.9
îøèáêà ñðåäíåêâàäðàòè÷íàÿ 2.56
îøèáêà ñòàíäàðòíàÿ 2.56
ïàðàìåòð 1.12
ïåðèîä îòáîðà (âûáîðêè) 4.17
ïëîòíîñòü ðàñïðåäåëåíèÿ (âåðîÿòíîñòåé) 1.5
ïîâåðõíîñòü ðåãðåññèè (Z ïî Õ è Y) 1.35
ïîâåðõíîñòü ðåãðåññèè (Z ïî X è Y äëÿ âûáîðêè) 2.43
ïîâòîðåíèå 2.89
ïîâòîðÿåìîñòü (ðåçóëüòàòà ïðîâåðêè) 3.15
ïîãðåøíîñòü âûáîðî÷íîãî ìåòîäà 2.53
ïîãðåøíîñòü îöåíêè 2.52
ïîäâûáîðêà 4.10
ïîäãîòîâêà ïðîáû 4.30
ïîäñîâîêóïíîñòü 2.5
ïîëèãîí êóìóëÿòèâíûõ ÷àñòîò 2.19
ïðàâèëüíîñòü (ðåçóëüòàòà ïðîâåðêè) 3.12
ïðåäåë âîñïðîèçâîäèìîñòè 3.23
ïðåäåë ïîâòîðÿåìîñòè 3.18
ïðåäåëû êëàññà 2.8
ïðåöèçèîííîñòü (ðåçóëüòàòà ïðîâåðêè) 3.14
ïðèçíàê 2.2
ïðè÷èíû ñëó÷àéíûå 2.92
ïðîáà 4.2
ïðîáà âòîðè÷íàÿ 4.22
ïðîáà äëÿ àíàëèçà 4.32
ïðîáà äóáëèðóþùàÿ 4.12
ïðîáà ëàáîðàòîðíàÿ 4.31
ïðîáà ìãíîâåííàÿ 4 25
ïðîáà ïåðâè÷íàÿ 4.21
ïðîáà îáúåäèíåííàÿ 4.29
ïðîáà ñóììàðíàÿ 4.28
ïðîáà ðàññëîåííàÿ 4.14
ïðîâåäåíèå ýêñïåðèìåíòà ïîâòîðíîå 2.90
ïðîöåäóðà âûáîðî÷íîãî êîíòðîëÿ 4.5
ðàçìàõ (âûáîðêè) 2.30
ðàçìàõ (âûáîðîê) ñðåäíèé 2.31
ðàçíîñòü âîñïðîèçâîäèìîñòè êðèòè÷åñêàÿ 3.24
ðàçíîñòü ïîâòîðÿåìîñòè êðèòè÷åñêàÿ 3.19
ðàìêè îòáîðà 2.4
ðàíäîìèçàöèÿ 2.91
ðàñïðåäåëåíèå c2 1.39
ðàñïðåäåëåíèå áèíîìèàëüíîå 1.49
ðàñïðåäåëåíèå Âåéáóëëà 1.48
ðàñïðåäåëåíèå (âåðîÿòíîñòåé) ìàðãèíàëüíîå 1.9
ðàñïðåäåëåíèå (âåðîÿòíîñòåé) 1.3
ðàñïðåäåëåíèå (âåðîÿòíîñòåé) óñëîâíîå 1.10
ðàñïðåäåëåíèå ãèïåðãåîìåòðè÷åñêîå 1.52
ðàñïðåäåëåíèå Ãóìáåëÿ 1.46
ðàñïðåäåëåíèå äâóìåðíîå íîðìàëüíîå 1.53
ðàñïðåäåëåíèå äâóìåðíîå Ëàïëàñà- Ãàóññà 1.53
ðàñïðåäåëåíèå äâóìåðíîå Ëàïëàñà- Ãàóññà íîðìèðîâàííîå 1.54
ðàñïðåäåëåíèå Ëàïëàñà-Ãàóññà 1.37
ðàñïðåäåëåíèå Ëàïëàñà- Ãàóññà ñòàíäàðòíîå 1.38
ðàñïðåäåëåíèå ëîãàðèôìè÷åñêè íîðìàëüíîå 1.42
ðàñïðåäåëåíèå ìíîãîìåðíîé ñëó÷àéíîé âåëè÷èíû 1.55
ðàñïðåäåëåíèå ìóëüòèíîìèàëüíîå 1.55
ðàñïðåäåëåíèå íîðìàëüíîå 1.37
ðàñïðåäåëåíèå ñòàíäàðòèçîâàííîå äâóìåðíîå íîðìàëüíîå 1.54
ðàñïðåäåëåíèå ñòàíäàðòíîå íîðìàëüíîå 1.38
ðàñïðåäåëåíèå Ñòüþäåíòà 1.40
ðàñïðåäåëåíèå îòðèöàòåëüíîå áèíîìèàëüíîå 1.50
ðàñïðåäåëåíèå ïðÿìîóãîëüíîå 1.36
ðàñïðåäåëåíèå Ïóàññîíà 1.51
ðàñïðåäåëåíèå ðàâíîìåðíîå 1.36
ðàñïðåäåëåíèå Ôðåøý 1.47
ðàñïðåäåëåíèå ÷àñòîò 2.15
ðàñïðåäåëåíèå ÷àñòîò äâóìåðíîå 2.20
ðàñïðåäåëåíèå ÷àñòîò ìàðãèíàëüíîå 2.24
ðàñïðåäåëåíèå ÷àñòîò ìíîãîìåðíîå 2.23
ðàñïðåäåëåíèå ÷àñòîò îäíîìåðíîå 2.16
ðàñïðåäåëåíèå ÷àñòîò óñëîâíîå 2.25
ðàñïðåäåëåíèå ýêñïîíåíöèàëüíîå 1.43
ðàñïðåäåëåíèå ýêñòðåìàëüíûõ çíà÷åíèé òèïà I 1.46
ðàñïðåäåëåíèå ýêñòðåìàëüíûõ çíà÷åíèé òèïà II 1.47
ðàñïðåäåëåíèå ýêñòðåìàëüíûõ çíà÷åíèé òèïà III 1.48
ðàññëîåíèå 4.13
ðåçóëüòàò (íà âûáðàííîì óðîâíå çíà÷èìîñòè a) çíà÷èìûé 2.84
ðåçóëüòàò ïðîâåðêè 3.7
ðåïëèêà 2.90
ñåðåäèíà êëàññà 2.9
ñåðåäèíà ðàçìàõà (âûáîðêè) 2.29
ñåðèÿ 2.48
ñìåùåíèå (ðåçóëüòàòà ïðîâåðêè) 3.13
ñìåùåíèå îöåíêè 2.54
ñîâîêóïíîñòü (ãåíåðàëüíàÿ) 2.3
ñðåäíåå àðèôìåòè÷åñêîå 2.26
ñðåäíåå àðèôìåòè÷åñêîå âçâåøåííîå 2.27
ñòàòèñòèêà 2.45
ñòàòèñòèêà ïîðÿäêîâàÿ 2.46
ñòåïåíü ñâîáîäû 2.85
ñõîäèìîñòü 3.15
òàáëèöà ñîïðÿæåííîñòè äâóõ ïðèçíàêîâ 2.22
òî÷íîñòü (ðåçóëüòàòà ïðîâåðêè) 3.11
òðåíä 2.47
óðîâåíü äîâåðèÿ 2.59
óðîâåíü çíà÷èìîñòè (êðèòåðèÿ) 2.70
óñëîâèÿ âîñïðîèçâîäèìîñòè 3.21
óñëîâèÿ ïîâòîðÿåìîñòè 3.16
ôóíêöèÿ ìîùíîñòè êðèòåðèÿ 2.80
ôóíêöèÿ ðàñïðåäåëåíèÿ 1.4
ôóíêöèÿ ðàñïðåäåëåíèÿ (âåðîÿòíîñòåé) ìàññ 1.6
ôóíêöèÿ ðàñïðåäåëåíèÿ äâóìåðíàÿ 1.7
ôóíêöèÿ ðàñïðåäåëåíèÿ ìíîãîìåðíàÿ 1.8
õàðàêòåðèñòèêà îïåðàòèâíàÿ 2.82
÷àñòîòà 2.11
÷àñòîòà êóìóëÿòèâíàÿ îòíîñèòåëüíàÿ 2.14
÷àñòîòà íàêîïëåííàÿ êóìóëÿòèâíàÿ 2.12
÷àñòîòà îòíîñèòåëüíàÿ 2.13
c2-distribution 1.39
c2-test 2.86
accepted reference value 3.4
accuracy 3.11
aggregated sample 4.28
alternative hypothesis 2.66
analysis sample 4.32
arithmetic mean 2.26
arithmetic weighted mean 2.27
average 2.26
average range 2.31
bar chart 2.18
bar diagram 2.18
beta distribution 1.45
bias 3.13
bias of estimator 2.54
binomial distribution 1.49
bivariate distribution function 1.7
bivariate frequency distribution 2.20
bivariate Laplace - Gauss distribution 1.53
bivariate normal distribution 1.53
bulk sampling 4.27
cell 2.7
central moment of order q 1.28
central moment of order q, sample 2.37
centered random variable 1.21
chance causes 2.92
characteristic 2.2
chi-squared distribution 1.39
chi-squared test 2.86
class 2.7
class boundaries 2.8
class limits 2.8
class width 2.10
cluster sampling 4.18
coefficient of variation 1.24
coefficient of variation, sample 2.35
composite hypothesis 2.68
conditional expectation 1.20
conditional frequency distribution 2.25
conditional probability distribution 1.10
confidence coefficient 2.59
confidence level 2.59
confidence limit 2.60
contingency table 2.22
conventional true value (of a quantity) 3.3
correlation 1.13
correlation coefficient 1.33
correlation coefficient, sample 2.41
covariance 1.32
covariance, sample 1.32
critical region 2.71
critical value 2.72
cumulative frequency 2.12
cumulative frequency polygon 2.19
cumulative relative frequency 2.14
degree of freedom 2.85
distribution free-test 2.69
distribution function 1.4
duplicate sample 4.12
entity 2.1
error of result 3.8
error of the first kind 2.75
error of the second kind 2.77
estimate 2.51
estimation 2.49
estimator 2.50
estimator error 2.52
expectation 1.18
expected value 1.18
exponential distribution 1.43
F-distribution 1.41
final sample 4.23
Frechet distribution 1.47
frequency 2.11
frequency distribution 2.15
F-test 2.88
gamma distribution 1.44
goodness of fit of a distribution 2.63
gross sample 4.29
Gumbel distribution 1.46
histogram 2.17
hypergeometric distribution 1.52
increment 4.25
independence 1.11
item 2.1
joint central moment of orders q and s 1.31
joint central moment of orders q and s, sample 2.39
joint moment of orders q and s about an origin (a, b) 1.30
joint moment of orders q and s about the origin 1.29
joint moment of orders q and s about the origin, sample 2.38
laboratory sample 4.31
Laplace - Gauss distribution 1.37
log-normal distribution 1.42
marginal expectation 1.19
marginal frequency distribution 2.24
marginal probability distribution 1.9
mean 1.18
mean deviation 2.32
mean range 2.31
measurand 3.5
(measurable) quantity 3.1
median 1.15
median, sample 2.28
mid-point of class 2.9
mid-range 2.29
mode 1.17
moment of order q about an origin a 1.27
moment of order q about the origin 1.26
moment of order q about the origin, sample 2.36
multinomial distribution 1.55
multi-stage cluster sampling 4.20
multi-stage sampling 4.19
multivariate distribution function 1.8
multivariate frequency distribution 2.23
negative binomial distribution 1.50
nested sampling 4.19
normal distribution 1.37
null hypothesis 2.66
one-sided confidence interval 2.58
one-sided test 2.73
operating characteristic 2.82
operating characteristic curve 2.83
order statistics 2.46
outliers 2.64
parameter 1.12
periodic systematic sampling 4.16
Poisson distribution 1.51
population 2.3
power curve 2.81
power function of a test 2.80
power of a test 2.79
precision 3.14
primary sample 4.21
probability 1.1
probability density function 1.5
probability distribution 1.3
probability mass function 1.6
quantile 1.14
quantity (measurable) 3.1
quartile 1.16
random error of result 3.9
random sample 4.8
random variable 1.2
randomization 2.91
range 2.30
rectangular distribution 1.36
regression coefficient, sample 2.44
relative frequency 2.13
repeatability 3.15
repeatability conditions 3.16
repeatability critical difference 3.19
repeatability limit 3.18
repeatability standard deviation 3.17
repetition 2.89
replication 2.90
reproducibility 3.20
reproducibility conditions 3.21
reproducibility critical difference 3.24
reproducibility limit 3.23
reproducibility standard deviation 3.22
run 2.48
sample 4.2
sample division 4.11
sample preparation 4.30
sample size 4.3
sampling 4.4
sampling error 2.53
sampling fraction 4.24
sampling frame 2.4
sampling interval 4.17
sampling procedure 4.5
sampling unit 4.1
sampling with replacement 4.6
sampling without replacement 4.7
scatter diagram 2.21
secondary sample 4.22
significance level 2.70
significant result (at the closen significance level a) 2.84
simple hypothesis 2.67
simple random sample 4.9
standard deviation 1.23
standard, sampling 2.34
standard error 2.56
standardized bivariate Laplace-Gauss distribution 1.54
standardized bivariate normal distribution 1.54
standardized Laplace-Gauss distribution 1.38
standardized normal distribution 1.38
standardized random variable 1.25
statistical coverage interval 2.61
statistical coverage limits 2.62
statistical test 2.65
statistics 2.45
stratification 4.13
stratified sampling 4.14
Students distribution 1.40
Students test 2.87
subpopuiation 2.5
subsample 4.10
systematic error of result 3.10
systematic sampling 4.15
t-distribirtion 1.40
t-test 2.87
test piece 4.26
test result 3.7
test sample 4.32
trend 2.47
true value (of a quantity) 3.2
trueness 3.12
two-sided confidence interval 2.57
two-sided test 2.74
two-way table of frequencies 2.22
type I error probability 2.76
type I extreme value distribution 1.46
type II error probability 2.78
type II extreme value distribution 1.47
type III extreme value distribution 1.48
unbiased estimator 2.55
uncertainty 3.25
uniform distribution 1.36
univariate frequency distribution 2.16
variance 1.22
variance, sampling 2.33
variate 1.2
Weibull distribution 1.48
weighted average 2.27
abequation d’une distribution 2.63
base d’echantillonnage 2.4
biais 3.13
biais d’un estimateur 2.54
caractere 2.2
causes aleatoires 2.92
centre de classe 2.9
classe 2.7
classe, largeur de 2.10
coefficient de correlation 1.33, 2.41
coefficient de regression 2.44
coefficient de variation 1.24, 2.35
conditions de repetabilite 3.16
conditions de reproductibilite 3.21
correlation 1.13
courbe d’efficacite 2.83
courbe de puissance 2.81
courbe de regression 1.34, 2.42
degre de liberte 2.85
diagramme en batons 2.18
difference critique de repetabilite 3.19
difference critique de reproductibilite 3.24
distribution d’effectif 2.15
distribution d’effectif a deux variables 2.20
distribution d’effectif a plusieurs variables 2.23
distribution d’effectif a une variable 2.16
distribution d’effectif conditionnelle 2.25
distribution d’effectif marginale 2.24
division d’un echantillon 4.11
ecart moyen 2.32
ecart-type de repetabilite 3.17
ecart-type de reproductibilite 3.22
echantillon 4.2
echantillon au hasard 4.8
echantillon dedouble 4.12
echantillon d’ensemble 4.28
echantillon final 4.23
echantillon global 4.29
echantillon pour analyse 4.32
echantillon pour essai 4.32
echantillon pour laboratoire 4.31
echantillon secondaire 4.22
echantillon simple au hasard 4.9
echantillonnage 4.4
echantillonnage a plusieurs degrees 4.19
echantillonnage avec remise 4.6
echantillonnage en grappe a plusieurs degrees 4.20
echantillonnage en grappe 4.18
echantillonnage en serie 4.19
echantillonnage en vrac 4.27
echantillonnage exhaustif 4.7
echantillonnage non exhaustif 4.6
echantillonnage primaire 4.21
echantillonnage sans remise 4.7
echantillonnage stratifie 4.14
echantillonnage systematique 4.15
echantillonnage systematique periodique 4.16
effectif 2.11
effectif cumule 2.12
effectif d’echantillon 4.3
efficacite 2.82
entite 2.1
eprouvette 4.26
erreur aleatoire de resultat 3.9
erreur d’echantillonnage 2.53
erreur de premiere espece 2.75
erreur de resultat 3.8
erreur d’estimation 2.52
erreur de seconde espece 2.77
erreur systematique de resultat 3.10
erreur-type 2.56
esperance mathematique 1.18
esperance mathematique conditionnelle 1.20
esperance mathematique marginale 1.19
estimateur 2.50
estimateur sans biais 2.55
estimation 2.49
estimation (resultat) 2.51
etendue 2.30
etendue moyenne 2.31
exactitude 3.11
fidelite 3.14
fonction d’efficacite d’un test 2.82
fonction de densite de probabilite 1.5
fonction de masse 1.6
fonction de puissance d’un test 2.80
fonction de repartition 1.4
fonction de repartition a deux variables 1.7
fonction de repartition a plusieurs variables 1.8
fraction de sondage 4.24
frequence 2.13
frequence cumulee 2.14
frontieres de classe 2.8
grandeur (mesurable) 3.1
histogramme 2.17
hypergeometrique, loi 1.52
hypothese alternative 2.66
hypothese composite 2.68
hypothese nulle 2.66
hypothese simple 2.67
incertitude 3.25
independance 1.11
individu 2.1
intervalle d’echantillonnage 4.17
intervalle de confiance bilateral 2.57
intervalle de confiance unilateral 2.58
intervalle statistique de dispersion 2.61
justesse 3.12
Laplace - Gauss, loi de 1.37
Laplace - Gauss a deux variables, loi de 1.53
Laplace - Gauss reduite, loi de 1.38
Laplace - Gauss reduite a deux variables, loi de 1.54
largeur de classe 2.10
limite de confiance 2.60
limite de repetabilite 3.18
limite de reproductibilite 3.23
limites de classe 2.8
limites statistiques de dispersion 2.62
loi beta 1.45
loi binomiale 1.49
loi binomiale negative 1.50
loi de chi carre 1.39
loi de F 1.41
loi de Frechet 1.47
loi de Gumbel 1.46
loi de c2 1.39
loi de Laplace - Gauss 1.37
loi de Laplace - Gauss a deux variables 1.53
loi de Laplace - Gauss reduite 1.38
loi de Laplace - Gauss reduite a deux variables 1.54
loi de Poisson 1.51
loi de probabilite conditionnelle 1.10
loi de probabilite 1.3
loi de probabilite marginale 1.9
loi des valeurs extremes de type I 1.46
loi des valeurs extremes de type II 1.47
loi des valeurs extremes de type III 1.48
loi de Student 1.40
loi de t 1.40
loi de Weibull 1.48
loi exponentielle 1.43
loi gamma 1.44
loi hypergeometrique 1.52
loi log-normale 1.42
loi multinomiale 1.55
loi normale 1.37
loi normale a deux variables 1.53
loi normale reduite 1.38
loi normale reduite a deux variables 1.54
loi rectangulaire 1.36
loi uniforme 1.36
mesurande 3.5
milieu de 1etendue 2.29
mode 1.17
moment centre d’ordre q 1.28, 2.37
moment centre d’ordres q et s 1.31, 2.39
moment d’ordre q par rapport a l’origine 1.26, 2.36
moment d’ordres q et s a partir de l’origine 1.29, 2.38
moment d’ordre q a partir d’une origine a 1.27
moment d’ordres q et s a partir d’une origine (a, b) 1.30
moyenne arithmetique 2.26
moyenne arithmetique ponderee 2.27
moyenne ponderee 2.27
niveau de confiance 2.59
niveau de signification 2.70
nuage de points 2.21
parametre 1.12
polygone d’effectif cumule 2.19
population 2.3
prelevement elementaire 4.25
preparation d’un echantillon 4.30
procedure d’echantillonnage 4.5
probabilite 1.1
probabilite d’erreur de premiere espece 2.76
probabilite d’erreur de seconde espece 2.78
puissance d’un test 2.79
quantile 1.14
quartile 1.16
randomisation 2.91
region critique 2.71
repetabilite 3.15
repetition 2.89
replique 2.90
reproductibilite 3.20
resultat dessai 3.7
resultat significatif (au niveau de signification a choisi) 2.84
sous-echantillon 4.10
sous-population 2.5
statistique 2.45
statistique d’ordre 2.46
stratification 4.13
suite 2.48
surface de regression 1.35, 2.43
table d’effectif a double entree 2.22
tableau de contingence 2.22
taux d’echantillonnage 4.24
tendance 2.47
test bilateral 2.74
test de chi carre 2.86
test de Student 2.87
test F 2.88
test c2 2.86
test non parametrique 2.69
test statistique 2.65
test t 2.87
test unilateral 2.73
unite d’echantillonnage 4.1
valeur conventionnellement vraie 3.3
valeur critique 2.72
valeur de reference acceptee 3.4
valeur esperee 1.18
valeur vraie (d’une grandeur) 3.2
valeurs aberrantes 2.64
valeurs extremes de type I, loi de 1.46
valeurs extremes de type II, loi de 1.47
valeurs extremes de type III, loi de 1.48
validite de l’ajustement 2.63
variable aleatoire 1.2
variable aleatoire centree 1.21
variable aleatoire centree reduite 1.25
variance 2.33
variance 1.22
[1] Ìåæäóíàðîäíûé ñëîâàðü îñíîâíûõ è îáùèõ òåðìèíîâ ìåòðîëîãèè. - ISO/IEC/OIML/BIPM. - Æåíåâà, 1984.
[2] ÌÈ 2247-93 Ðåêîìåíäàöèÿ. Ãîñóäàðñòâåííàÿ ñèñòåìà îáåñïå÷åíèÿ åäèíñòâà èçìåðåíèé. Ìåòðîëîãèÿ. Îñíîâíûå òåðìèíû è îïðåäåëåíèÿ. - Ñ.-Ïá.: ÂÍÈÈÌ èì. Ä. È. Ìåíäåëååâà, 1994.
Êëþ÷åâûå ñëîâà: òåîðèÿ âåðîÿòíîñòåé, ðàñïðåäåëåíèå ñëó÷àéíîé âåëè÷èíû, ñòàòèñòèêà, ñëó÷àéíàÿ âûáîðêà, ñðåäíåå, äèñïåðñèÿ, òî÷íîñòü, ïðàâèëüíîñòü, ïðåöèçèîííîñòü